THE CLIQUE NUMBER OF Γ(Zpn (α))

被引:2
作者
Abughneim, Omar A. [1 ]
Abdaljawad, Emad E. [2 ]
Al-Ezeh, Hasan [1 ]
机构
[1] Univ Jordan, Dept Math, Fac Sci, Amman 11942, Jordan
[2] Univ Dammam, Fac Sci & Art Alkhafji, Dammam, Saudi Arabia
关键词
Zero-divisor graph; Clique number; Integers modulo n; ZERO-DIVISOR GRAPH; RINGS;
D O I
10.1216/RMJ-2012-42-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The zero-divisor graph of a commutative ring with one (say R) is a graph whose vertices are the nonzero zero-divisors of this ring, with two distinct vertices are adjacent in case their product is zero. This graph is denoted by P(R). We study the zero-divisor graph Gamma(Z(p)n(alpha)) where p is a prime number, Zpn. is the set of integers modulo p(n), and Z(p)n (alpha) = {a + bx : a,b is an element of Z(p)n and X-2 = 0}. We find the clique number of Gamma(Z(p)n (alpha)) and the complete subgraphs of Gamma(Z(p)n(alpha)) that achieve this clique number.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 14 条
[1]  
Abdaljawad E.E., 2007, THESIS JORDAN U JORD
[2]  
Anderson D.F., 2001, LECT NOTES PURE APPL, V220
[3]   On the diameter and girth of a zero-divisor graph [J].
Anderson, David F. ;
Mulay, S. B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :543-550
[4]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[5]   Zero-divisor graphs of idealizations [J].
Axtell, M ;
Stickles, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 204 (02) :235-243
[6]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[7]  
De Meyer F., 2002, AUTOMORPHISMS ZERO D
[8]   Zero divisor graphs of semigroups [J].
DeMeyer, F ;
DeMeyer, L .
JOURNAL OF ALGEBRA, 2005, 283 (01) :190-198
[9]   The zero-divisor graph of a commutative semigroup [J].
DeMeyer, FR ;
McKenzie, T ;
Schneider, K .
SEMIGROUP FORUM, 2002, 65 (02) :206-214
[10]  
Krone J., ALGORITHMS CONSTRUCT