Layer-dependent fluorination and doping of graphene via plasma treatment

被引:51
作者
Chen, Minjiang [1 ,2 ]
Zhou, Haiqing [1 ,2 ]
Qiu, Caiyu [1 ,2 ]
Yang, Huaichao [1 ,3 ]
Yu, Fang [1 ,4 ]
Sun, Lianfeng [1 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[4] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
WALL CARBON NANOTUBES; RAMAN-SPECTROSCOPY; REVERSIBLE HYDROGENATION; FUNCTIONALIZATION; TRANSISTOR; MOLECULES; GRAPHITE; DISORDER; PHASE; GAS;
D O I
10.1088/0957-4484/23/11/115706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the fluorination of n-layer graphene is systematically investigated using CHF3 and CF4 plasma treatments. The G and 2D Raman peaks of graphene show upshifts after each of the two kinds of plasma treatment, indicating p-doping to the graphene. Meanwhile, D, D' and D + G peaks can be clearly observed for monolayer graphene, whereas these peaks are weaker for thicker n-layer graphene (n >= 2) at the same experimental conditions. The upshifts of the G and 2D peaks and the ratio of I(2D)/I(G) for CF4 plasma treated graphene are larger than those of CHF3 plasma treated graphene. The ratio of I(2D)/I(G) of the Raman spectra is notably small in CF4 plasma treated graphene. These facts indicate that CF4 plasma treatment introduces more p-doping and fewer defects for graphene. Moreover, the fluorination of monolayer graphene by CF4 plasma treatment is reversible through thermal annealing while that by CHF3 plasma treatment is irreversible. These studies explore the information on the surface properties of graphene and provide an optimal method of fluorinating graphene through plasma techniques.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Temperature dependent Raman spectroscopy of chemically derived graphene [J].
Allen, Matthew J. ;
Fowler, Jesse D. ;
Tung, Vincent C. ;
Yang, Yang ;
Weiller, Bruce H. ;
Kaner, Richard B. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[2]   The functionalization of graphene using electron-beam generated plasmas [J].
Baraket, M. ;
Walton, S. G. ;
Lock, E. H. ;
Robinson, J. T. ;
Perkins, F. K. .
APPLIED PHYSICS LETTERS, 2010, 96 (23)
[3]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[4]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[5]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[6]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[7]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[8]   Doping Single-Layer Graphene with Aromatic Molecules [J].
Dong, Xiaochen ;
Fu, Dongliang ;
Fang, Wenjing ;
Shi, Yumeng ;
Chen, Peng ;
Li, Lain-Jong .
SMALL, 2009, 5 (12) :1422-1426
[9]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[10]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415