Seedling development and regeneration success after 10 years following group selection harvesting in a sessile oak (Quercus petraea[Mattuschka] Liebl.) stand

被引:8
作者
Kuehne, Christian [1 ]
Pyttel, Patrick [2 ]
Modrow, Tobias [2 ]
Kohnle, Ulrich [3 ]
Bauhus, Juergen [2 ]
机构
[1] Norwegian Inst Bioecon Res, Hogskoleveien 8, N-1433 As, Norway
[2] Albert Ludwigs Univ Freiburg, Chair Silviculture, D-79085 Freiburg, Germany
[3] Forest Res Inst Baden Wurttemberg, Wonnhaldestr 4, D-79100 Freiburg, Germany
关键词
Natural regeneration; Forest gap; Canopy opening; Interspecific competition; Rubusspp; Seedling density; Close-to-nature forest management; QUERCUS-ROBUR L; NATURAL REGENERATION; FAGUS-SYLVATICA; INTERSPECIFIC COMPETITION; FORESTS; PETRAEA; GROWTH; LIGHT; TOLERANT; QUALITY;
D O I
10.1007/s13595-020-00972-y
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Key message This study showed that regeneration success (presence of oaks >= 150 cm in total height) in artificial canopy openings of a mature mixed sessile oak stand was mainly driven by initial oak seedling density. Context Small-scale harvesting methods as practiced in close-to-nature forestry may disadvantage the regeneration of more light-demanding tree species including sessile oak (Quercus petraea[Mattuschka] Liebl.) and thus cause regeneration failure. However, owing to the short-term nature of many previous studies, regeneration success of sessile oak could not be properly ascertained. Aims This study examined oak seedling development over a time period of ten growing seasons in canopy openings of 0.05 to 0.2 ha in size created through group selection harvesting in a mature mixed sessile oak forest in southwestern Germany. We tried to answer the following research questions: (i) how do initial stand conditions relate to and interact with oak seedling density and seedling height growth, and (ii) what are the driving factors of regeneration success under the encountered site conditions. Methods We evaluated the influence of solar radiation,Rubusspp. cover, initial oak seedling density, and competition from other tree species on change in density and height of oak seedlings, as well as overall regeneration success (oak seedlings >= 150 cm in height). Results Regeneration success increased with initial oak seedling density and solar radiation levels and decreased with earlyRubusspp. cover. Density and maximum height of oak seedlings was negatively related with competition of other woody species. Conclusion Results of our longer-term study demonstrate that forest management activities to regenerate sessile oak naturally are only successful in stands (i) without advance regeneration of other woody species and without established, recalcitrant ground vegetation, (ii) with a sufficiently high initial oak seedling density in larger patches following mast years, and (iii) where periodic monitoring and control of competing woody individuals can be ensured. Our findings further corroborate the view that natural regeneration of sessile oak in small-scale canopy openings is possible in principle.
引用
收藏
页数:13
相关论文
共 55 条