Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting - Part I. CuO nanoparticle preparation

被引:73
作者
Chiang, Chia-Ying [1 ]
Aroh, Kosi [1 ]
Ehrman, Sheryl H. [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Copper oxide; Nanoparticles; Aerosol; Flame spray pyrolysis; Collision/sintering theory; FIELD-EMISSION; PARTICLES; DIFFUSION; GROWTH; SURFACE; SIZE; COMBUSTION; ADSORPTION; MECHANISM; OXIDATION;
D O I
10.1016/j.ijhydene.2011.10.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper oxide (CuO) semiconductor nanoparticles are of interest because of their promising use for electronic and optoelectronic devices, and the size of the CuO particles for these applications is important. In this work, near spherical CuO nanoparticles with aspect ratio of 1.2-1.3 were made by a flame spray pyrolysis (FSP) method. In FPS, flame temperature, residence time, precursor concentration can be used to control particle size. As the precursor concentration increased from 0.5% to 35% w/w, primary particle diameter increased from 7 +/- 2 to 20 +/- 11 nm. Larger primary particle diameters were observed in the low gas flow system (set B) due to the long residence time in the high temperature zone. For the dependence of temperature on particle diameter, particles grew to similar diameter, i.e. similar to 11 nm, in both flame conditions within the hot temperature zone (80% of melting point of CuO) but for particles having longer residence time, i.e. 550 ms in set B, the standard deviation of particle diameter is 45% larger than for particles with 66 ms as residence time in set A. Modeling gave a result for CuO final particle diameter, based on collision/sintering theory with sintering by solid state diffusion, of 6.7 and 9.0 nm for set A and set B, respectively, with surface tension assumed to be 0.5 J/m(2).Comparison with the experiment results, 11 +/- 4 nm diameter for both flame conditions, indicates the simulations were reasonable. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4871 / 4879
页数:9
相关论文
共 60 条
[1]   DETERMINATION OF CRYSTALLITE SIZE WITH THE X-RAY SPECTROMETER [J].
ALEXANDER, L ;
KLUG, HP .
JOURNAL OF APPLIED PHYSICS, 1950, 21 (02) :137-142
[2]   Diffusion in nanocrystalline materials [J].
Belova, IV ;
Murch, GE .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (05) :873-878
[3]   Quantum size effects in CuO nanoparticles [J].
Borgohain, K ;
Singh, JB ;
Rao, MVR ;
Shripathi, T ;
Mahamuni, S .
PHYSICAL REVIEW B, 2000, 61 (16) :11093-11096
[4]   MEASUREMENT OF HIGH GAS TEMPERATURES WITH FINE WIRE THERMOCOUPLES [J].
BRADLEY, D ;
MATTHEWS, KJ .
JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1968, 10 (04) :299-&
[5]   Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis [J].
Camenzind, A ;
Strobel, R ;
Pratsinis, SE .
CHEMICAL PHYSICS LETTERS, 2005, 415 (4-6) :193-197
[6]   Flame-made nanoparticles for nanocomposites [J].
Camenzind, Adrian ;
Caseri, Walter R. ;
Pratsinis, Sotiris E. .
NANO TODAY, 2010, 5 (01) :48-65
[7]   The catalytic methanol synthesis over nanoparticle metal oxide catalysts [J].
Carnes, CL ;
Klabunde, KJ .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2003, 194 (1-2) :227-236
[8]   Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide [J].
Carnes, CL ;
Stipp, J ;
Klabunde, KJ .
LANGMUIR, 2002, 18 (04) :1352-1359
[9]   Continuous single-step fabrication of nonaggregated, size-controlled and cubic nanocrystalline Y2O3:Eu3+ phosphors using flame spray pyrolysis [J].
Chang, H ;
Lenggoro, IW ;
Okuyama, K ;
Kim, TO .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (6A) :3535-3539
[10]   Flame spray pyrolysis for preparing red-light-emitting, submicron-sized luminescent strontium titanate particles [J].
Chang, HW ;
Lenggoro, IW ;
Okuyama, K ;
Jang, HD .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (2A) :967-973