CONNECTING TARGETS VIA LATENT TOPICS AND CONTRASTIVE LEARNING: A UNIFIED FRAMEWORK FOR ROBUST ZERO-SHOT AND FEW-SHOT STANCE DETECTION

被引:10
|
作者
Liu, Rui [1 ,2 ]
Lin, Zheng [1 ,2 ]
Fu, Peng [1 ]
Liu, Yuanxin [1 ,2 ]
Wang, Weiping [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
基金
中国国家自然科学基金;
关键词
Stance Detection; Latent Topic Variable; Contrastive Learning; BERT;
D O I
10.1109/ICASSP43922.2022.9746739
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Zero-shot and few-shot stance detection (ZFSD) aims to automatically identify the users' stance toward a wide range of continuously emerging targets without or with limited labeled data. Previous works on in-target and cross-target stance detection typically focus on extremely limited targets, which is not applicable to the zero-shot and few-shot scenarios. Additionally, existing ZFSD models are not good at modeling the relationship between seen and unseen targets. In this paper, we propose a unified end-to-end framework with a discrete latent topic variable that implicitly establishes the connections between targets. Moreover, we apply supervised contrastive learning to enhance the generalization ability of the model. Comprehensive experiments on the ZFSD task verify the effectiveness and superiority of our proposed method.
引用
收藏
页码:7812 / 7816
页数:5
相关论文
共 50 条
  • [1] Zero-Shot and Few-Shot Stance Detection on Varied Topics via Conditional Generation
    Wen, Haoyang
    Hauptmann, Alexander G.
    61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2, 2023, : 1491 - 1499
  • [2] Zero-Shot Stance Detection via Contrastive Learning
    Liang, Bin
    Chen, Zixiao
    Gui, Lin
    He, Yulan
    Yang, Min
    Xu, Ruifeng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2738 - 2747
  • [3] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [4] Zero-Shot Stance Detection via Sentiment-Stance Contrastive Learning
    Zou, Jiaying
    Zhao, Xuechen
    Xie, Feng
    Zhou, Bin
    Zhang, Zhong
    Tian, Lei
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 251 - 258
  • [5] JointCL: A Joint Contrastive Learning Framework for Zero-Shot Stance Detection
    Liang, Bin
    Zhu, Qinglin
    Li, Xiang
    Yang, Min
    Gui, Lin
    He, Yulan
    Xu, Ruifeng
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 81 - 91
  • [6] Feature Enhanced Zero-Shot Stance Detection via Contrastive Learning
    Zhao, Xuechen
    Zou, Jiaying
    Zhang, Zhong
    Xie, Feng
    Zhou, Bin
    Tian, Lei
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 900 - 908
  • [7] Enhancing Zero-shot and Few-shot Stance Detection with Commonsense Knowledge Graph
    Liu, Rui
    Lin, Zheng
    Tan, Yutong
    Wang, Weiping
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3152 - 3157
  • [8] Task-Specific Data Augmentation for Zero-shot and Few-shot Stance Detection
    Zhang, Jiarui
    Wu, Shaojuan
    Zhang, Xiaowang
    Feng, Zhiyong
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 160 - 163
  • [9] Enhancing Zero-Shot Stance Detection with Contrastive and Prompt Learning
    Yao, Zhenyin
    Yang, Wenzhong
    Wei, Fuyuan
    ENTROPY, 2024, 26 (04)
  • [10] Robust Zero-Shot Intent Detection via Contrastive Transfer Learning
    Maqbool, M. H.
    Khan, F. A.
    Siddique, A. B.
    Foroosh, Hassan
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 49 - 56