Lozenge Tilings and the Gaussian Free Field on a Cylinder

被引:4
作者
Ahn, Andrew [1 ]
Russkikh, Marianna [2 ]
Van Peski, Roger [2 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
SCHUR PROCESS; DIMERS; FLUCTUATIONS; SUBMATRICES; STATISTICS; PARTITIONS; SPECTRA; CLT;
D O I
10.1007/s00220-022-04491-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the periodic Schur process, introduced in (Borodin in Duke Math J 140(3):391-468 2007), to study the random height function of lozenge tilings (equivalently, dimers) on an infinite cylinder distributed under two variants of the q(vol) measure. Under the first variant, corresponding to random cylindric partitions, the height function converges to a deterministic limit shape and fluctuations around it are given by the Gaussian free field in the conformal structure predicted by the Kenyon-Okounkov conjecture. Under the second variant, corresponding to an unrestricted dimer model on the cylinder, the fluctuations are given by the same Gaussian free field with an additional discrete Gaussian shift component. Fluctuations of the latter type have been previously conjectured for dimer models on planar domains with holes.
引用
收藏
页码:1221 / 1275
页数:55
相关论文
共 58 条
[1]   Discrete Gaussian Distributions via Theta Functions [J].
Agostini, Daniele ;
Amendola, Carlos .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (01) :1-30
[2]   Global universality of Macdonald plane partitions [J].
Ahn, Andrew .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03) :1641-1705
[3]  
Anderson GW., 2010, CAMBRIDGE STUDIES AD
[4]  
Berestycki N., 2019, ARXIV
[5]  
Berestycki N., 2016, Lecture notes
[6]   DIMERS AND IMAGINARY GEOMETRY [J].
Berestycki, Nathanael ;
Laslier, Benoit ;
Ray, Gourab .
ANNALS OF PROBABILITY, 2020, 48 (01) :1-52
[7]   The Periodic Schur Process and Free Fermions at Finite Temperature [J].
Betea, Dan ;
Bouttier, Jeremie .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (01)
[8]   Periodic Schur process and cylindric partitions [J].
Borodin, Alexei .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) :391-468
[9]  
Borodin A, 2014, MATH SCI R, V65, P57
[10]   OBSERVABLES OF MACDONALD PROCESSES [J].
Borodin, Alexei ;
Corwin, Ivan ;
Gorin, Vadim ;
Shakirov, Shamil .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (03) :1517-1558