Comparing bioassay response and similarity ensemble approaches to probing protein pharmacology

被引:11
作者
Chen, Bin [1 ]
McConnell, Kevin J. [2 ]
Wale, Nikil [2 ]
Wild, David J. [1 ]
Gifford, Eric M. [2 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA
[2] Pfizer Global Res & Dev, Groton, CT USA
关键词
CHEMOGENOMICS; NETWORKS;
D O I
10.1093/bioinformatics/btr506
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Networks to predict protein pharmacology can be created using ligand similarity or using known bioassay response profiles of ligands. Recent publications indicate that similarity methods can be highly accurate, but it has been unclear how similarity methods compare to methods that use bioassay response data directly. Results: We created protein networks based on ligand similarity (Similarity Ensemble Approach or SEA) and ligand bioassay response-data (BARD) using 155 Pfizer internal BioPrint assays. Both SEA and BARD successfully cluster together proteins with known relationships, and predict some non-obvious relationships. Although the approaches assess target relations from different perspectives, their networks overlap considerably (40% overlap of the top 2% of correlated edges). They can thus be considered as comparable methods, with a distinct advantage of the similarity methods that they only require simple computations (similarity of compound) as opposed to extensive experimental data.
引用
收藏
页码:3044 / 3049
页数:6
相关论文
共 16 条
  • [1] Computing topological parameters of biological networks
    Assenov, Yassen
    Ramirez, Fidel
    Schelhorn, Sven-Eric
    Lengauer, Thomas
    Albrecht, Mario
    [J]. BIOINFORMATICS, 2008, 24 (02) : 282 - 284
  • [2] PubChem as a Source of Polypharmacology
    Chen, Bin
    Wild, David
    Guha, Rajarshi
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (09) : 2044 - 2055
  • [3] Prediction and Evaluation of Protein Farnesyltransferase Inhibition by Commercial Drugs
    DeGraw, Amanda J.
    Keiser, Michael J.
    Ochocki, Joshua D.
    Shoichet, Brian K.
    Distefano, Mark D.
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (06) : 2464 - 2471
  • [4] Quantifying the relationships among drug classes
    Hert, Jerome
    Keiser, Michael J.
    Irwin, John J.
    Oprea, Tudor I.
    Shoichet, Brian K.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (04) : 755 - 765
  • [5] Holliday JD, 2002, COMB CHEM HIGH T SCR, V5, P155
  • [6] Network pharmacology: the next paradigm in drug discovery
    Hopkins, Andrew L.
    [J]. NATURE CHEMICAL BIOLOGY, 2008, 4 (11) : 682 - 690
  • [7] Relating protein pharmacology by ligand chemistry
    Keiser, Michael J.
    Roth, Bryan L.
    Armbruster, Blaine N.
    Ernsberger, Paul
    Irwin, John J.
    Shoichet, Brian K.
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (02) : 197 - 206
  • [8] Predicting new molecular targets for known drugs
    Keiser, Michael J.
    Setola, Vincent
    Irwin, John J.
    Laggner, Christian
    Abbas, Atheir I.
    Hufeisen, Sandra J.
    Jensen, Niels H.
    Kuijer, Michael B.
    Matos, Roberto C.
    Tran, Thuy B.
    Whaley, Ryan
    Glennon, Richard A.
    Hert, Jerome
    Thomas, Kelan L. H.
    Edwards, Douglas D.
    Shoichet, Brian K.
    Roth, Bryan L.
    [J]. NATURE, 2009, 462 (7270) : 175 - U48
  • [9] Krejsa CM, 2003, CURR OPIN DRUG DISC, V6, P470
  • [10] Kurihara Takashi, 2003, Nihon Yakurigaku Zasshi, V121, P211, DOI 10.1254/fpj.121.211