An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki67 in breast cancer

被引:78
|
作者
Rimm, David L. [1 ]
Leung, Samuel C. Y. [2 ]
McShane, Lisa M. [3 ]
Bai, Yalai [1 ]
Bane, Anita L. [4 ]
Bartlett, John M. S. [5 ,6 ]
Bayani, Jane [5 ]
Chang, Martin C. [7 ]
Dean, Michelle [8 ]
Denkert, Carsten [9 ,10 ]
Enwere, Emeka K. [8 ]
Galderisi, Chad [11 ]
Gholap, Abhi [12 ]
Hugh, Judith C. [13 ]
Jadhav, Anagha [12 ]
Kornaga, Elizabeth N. [8 ]
Laurinavicius, Arvydas [14 ]
Levenson, Richard [15 ]
Lima, Joema [5 ]
Miller, Keith [16 ]
Pantanowitz, Liron [17 ]
Piper, Tammy [6 ]
Ruan, Jason [15 ]
Srinivasan, Malini [17 ]
Virk, Shakeel [18 ]
Wu, Ying [4 ]
Yang, Hua [13 ]
Hayes, Daniel F. [19 ]
Nielsen, Torsten O. [2 ]
Dowsett, Mitch [20 ]
机构
[1] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06510 USA
[2] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[3] NCI, Biometr Res Program, Div Canc Treatment & Diag, Bethesda, MD 20892 USA
[4] McMaster Univ, Juravinski Hosp & Canc Ctr, Dept Pathol & Mol Med, Hamilton, ON, Canada
[5] Ontario Inst Canc Res, Transformat Pathol, Toronto, ON, Canada
[6] Edinburgh Canc Res Ctr, Biomarkers & Compan Diagnost Grp, Edinburgh, Midlothian, Scotland
[7] Univ Toronto, Sinai Hlth Syst, Toronto, ON, Canada
[8] Alberta Hlth Serv, Tom Baker Canc Ctr, Translat Labs, Calgary, AB, Canada
[9] Charite Campus Mitte, Inst Pathol, Berlin, Germany
[10] Charite Campus Mitte, German Canc Consortium DKTK, Berlin, Germany
[11] MolecularMD, Portland, OR USA
[12] NeoPro SEZ, Optra Technol, Blue Ridge, Hinjewadi, India
[13] Univ Alberta, Dept Lab Med & Pathol, Edmonton, AB, Canada
[14] Vilnius Univ, Vilnius Univ Hosp Santara Clin, Natl Ctr Pathol, Vilnius, Lithuania
[15] Univ Calif Davis, Med Ctr, Dept Med Pathol & Lab Med, Sacramento, CA 95817 USA
[16] Poundbury Canc Inst, Canc Diagnost Qual Assurance Serv CIC, Poundbury, DT, England
[17] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA USA
[18] Queens Univ, Dept Pathol & Mol Med, Kingston, ON, Canada
[19] Univ Michigan, Dept Internal Med, Ctr Comprehens Canc, Breast Oncol Program, Ann Arbor, MI 48109 USA
[20] Inst Canc Res, London, England
关键词
D O I
10.1038/s41379-018-0109-4
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The nuclear proliferation biomarker Ki67 has potential prognostic, predictive, and monitoring roles in breast cancer. Unacceptable between-laboratory variability has limited its clinical value. The International Ki67 in Breast Cancer Working Group investigated whether Ki67 immunohistochemistry can be analytically validated and standardized across laboratories using automated machine-based scoring. Sets of pre-stained core-cut biopsy sections of 30 breast tumors were circulated to 14 laboratories for scanning and automated assessment of the average and maximum percentage of tumor cells positive for Ki67. Seven unique scanners and 10 software platforms were involved in this study. Pre-specified analyses included evaluation of reproducibility between all laboratories (primary) as well as among those using scanners from a single vendor (secondary). The primary reproducibility metric was intraclass correlation coefficient between laboratories, with success considered to be intraclass correlation coefficient > 0.80. Intraclass correlation coefficient for automated average scores across 16 operators was 0.83 (95% credible interval: 0.73-0.91) and intraclass correlation coefficient for maximum scores across 10 operators was 0.63 (95% credible interval: 0.44-0.80). For the laboratories using scanners from a single vendor (8 score sets), intraclass correlation coefficient for average automated scores was 0.89 (95% credible interval: 0.81-0.96), which was similar to the intraclass correlation coefficient of 0.87 (95% credible interval: 0.81-0.93) achieved using these same slides in a prior visual-reading reproducibility study. Automated machine assessment of average Ki67 has the potential to achieve between-laboratory reproducibility similar to that for a rigorously standardized pathologist-based visual assessment of Ki67. The observed intraclass correlation coefficient was worse for maximum compared to average scoring methods, suggesting that maximum score methods may be suboptimal for consistent measurement of proliferation. Automated average scoring methods show promise for assessment of Ki67 scoring, but requires further standardization and subsequent clinical validation.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [31] Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups
    Mustapha Abubakar
    Nick Orr
    Frances Daley
    Penny Coulson
    H. Raza Ali
    Fiona Blows
    Javier Benitez
    Roger Milne
    Herman Brenner
    Christa Stegmaier
    Arto Mannermaa
    Jenny Chang-Claude
    Anja Rudolph
    Peter Sinn
    Fergus J. Couch
    Peter Devilee
    Rob A. E. M. Tollenaar
    Caroline Seynaeve
    Jonine Figueroa
    Mark E. Sherman
    Jolanta Lissowska
    Stephen Hewitt
    Diana Eccles
    Maartje J. Hooning
    Antoinette Hollestelle
    John W. M. Martens
    Carolien H. M. van Deurzen
    kConFab Investigators
    Manjeet K. Bolla
    Qin Wang
    Michael Jones
    Minouk Schoemaker
    Jelle Wesseling
    Flora E. van Leeuwen
    Laura Van ‘t Veer
    Douglas Easton
    Anthony J. Swerdlow
    Mitch Dowsett
    Paul D. Pharoah
    Marjanka K. Schmidt
    Montserrat Garcia-Closas
    Breast Cancer Research, 18
  • [32] A simple digital image analysis system for automated Ki67 assessment in primary breast cancer
    Alataki, Anastasia
    Zabaglo, Lila
    Tovey, Holly
    Dodson, Andrew
    Dowsett, Mitch
    HISTOPATHOLOGY, 2021, 79 (02) : 200 - 209
  • [33] Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups
    Abubakar, Mustapha
    Orr, Nick
    Daley, Frances
    Coulson, Penny
    Ali, H. Raza
    Blows, Fiona
    Benitez, Javier
    Milne, Roger
    Brenner, Herman
    Stegmaier, Christa
    Mannermaa, Arto
    Chang-Claude, Jenny
    Rudolph, Anja
    Sinn, Peter
    Couch, Fergus J.
    Devilee, Peter
    Tollenaar, Rob A. E. M.
    Seynaeve, Caroline
    Figueroa, Jonine
    Sherman, Mark E.
    Lissowska, Jolanta
    Hewitt, Stephen
    Eccles, Diana
    Hooning, Maartje J.
    Hollestelle, Antoinette
    Martens, John W. M.
    van Deurzen, Carolien H. M.
    Bolla, Manjeet K.
    Wang, Qin
    Jones, Michael
    Schoemaker, Minouk
    Wesseling, Jelle
    van Leeuwen, Flora E.
    Van 't Veer, Laura
    Easton, Douglas
    Swerdlow, Anthony J.
    Dowsett, Mitch
    Pharoah, Paul D.
    Schmidt, Marjanka K.
    Garcia-Closas, Montserrat
    BREAST CANCER RESEARCH, 2016, 18
  • [34] Validating the Accuracy and Prognosis of Automatic Ki67 Assessment Based on IKWG Global Scoring in Breast Cancer
    Cai, Lijing
    Dong, Pei
    Liu, Yueping
    LABORATORY INVESTIGATION, 2024, 104 (03) : S125 - S127
  • [35] Analytical validation of a standardized scoring protocol for Ki67: Phase 3 of an international multicenter collaboration
    Leung S.C.Y.
    Nielsen T.O.
    Zabaglo L.
    Arun I.
    Badve S.S.
    Bane A.L.
    Bartlett J.M.S.
    Borgquist S.
    Chang M.C.
    Dodson A.
    Enos R.A.
    Fineberg S.
    Focke C.M.
    Gao D.
    Gown A.M.
    Grabau D.
    Gutierrez C.
    Hugh J.C.
    Kos Z.
    Lænkholm A.-V.
    Lin M.-G.
    Mastropasqua M.G.
    Moriya T.
    Nofech-Mozes S.
    Osborne C.K.
    Penault-Llorca F.M.
    Piper T.
    Sakatani T.
    Salgado R.
    Starczynski J.
    Viale G.
    Hayes D.F.
    McShane L.M.
    Dowsett M.
    npj Breast Cancer, 2 (1)
  • [36] Interobserver concordance of Ki67 labeling index in breast cancer: Japan Breast Cancer Research Group Ki67 Ring Study
    Mikami, Yoshiki
    Ueno, Takayuki
    Yoshimura, Kenichi
    Tsuda, Hitoshi
    Kurosumi, Masafumi
    Masuda, Shinobu
    Horii, Rie
    Toi, Masakazu
    Sasano, Hironobu
    CANCER SCIENCE, 2013, 104 (11) : 1539 - 1543
  • [37] Automated estimation of Ki67 in 100 breast carcinomas
    Woller, Nina
    Poulsen, Tim Svenstrup
    Balslev, Eva
    Lippert, Michael Friis
    APMIS, 2014, 122 : 12 - 12
  • [38] Good staining quality ensuring the reproducibility of Ki67 assessment
    Wang, Yeh-Han
    Lai, Chiung-Ru
    Lien, Huang-Chun
    Hsu, Chih-Yi
    JOURNAL OF CLINICAL PATHOLOGY, 2020, 73 (07) : 413 - 417
  • [39] A Comparison of Visual Assessment and Automated Digital Image Analysis of Ki67 Labeling Index in Breast Cancer
    Zhong, Fangfang
    Bi, Rui
    Yu, Baohua
    Yang, Fei
    Yang, Wentao
    Shui, Ruohong
    PLOS ONE, 2016, 11 (02):
  • [40] Impact of intratumoural heterogeneity on the assessment of Ki67 expression in breast cancer
    M. A. Aleskandarany
    A. R. Green
    I Ashankyty
    A Elmouna
    M Diez-Rodriguez
    C. C. Nolan
    I. O. Ellis
    E. A. Rakha
    Breast Cancer Research and Treatment, 2016, 158 : 287 - 295