An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki67 in breast cancer

被引:78
|
作者
Rimm, David L. [1 ]
Leung, Samuel C. Y. [2 ]
McShane, Lisa M. [3 ]
Bai, Yalai [1 ]
Bane, Anita L. [4 ]
Bartlett, John M. S. [5 ,6 ]
Bayani, Jane [5 ]
Chang, Martin C. [7 ]
Dean, Michelle [8 ]
Denkert, Carsten [9 ,10 ]
Enwere, Emeka K. [8 ]
Galderisi, Chad [11 ]
Gholap, Abhi [12 ]
Hugh, Judith C. [13 ]
Jadhav, Anagha [12 ]
Kornaga, Elizabeth N. [8 ]
Laurinavicius, Arvydas [14 ]
Levenson, Richard [15 ]
Lima, Joema [5 ]
Miller, Keith [16 ]
Pantanowitz, Liron [17 ]
Piper, Tammy [6 ]
Ruan, Jason [15 ]
Srinivasan, Malini [17 ]
Virk, Shakeel [18 ]
Wu, Ying [4 ]
Yang, Hua [13 ]
Hayes, Daniel F. [19 ]
Nielsen, Torsten O. [2 ]
Dowsett, Mitch [20 ]
机构
[1] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06510 USA
[2] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[3] NCI, Biometr Res Program, Div Canc Treatment & Diag, Bethesda, MD 20892 USA
[4] McMaster Univ, Juravinski Hosp & Canc Ctr, Dept Pathol & Mol Med, Hamilton, ON, Canada
[5] Ontario Inst Canc Res, Transformat Pathol, Toronto, ON, Canada
[6] Edinburgh Canc Res Ctr, Biomarkers & Compan Diagnost Grp, Edinburgh, Midlothian, Scotland
[7] Univ Toronto, Sinai Hlth Syst, Toronto, ON, Canada
[8] Alberta Hlth Serv, Tom Baker Canc Ctr, Translat Labs, Calgary, AB, Canada
[9] Charite Campus Mitte, Inst Pathol, Berlin, Germany
[10] Charite Campus Mitte, German Canc Consortium DKTK, Berlin, Germany
[11] MolecularMD, Portland, OR USA
[12] NeoPro SEZ, Optra Technol, Blue Ridge, Hinjewadi, India
[13] Univ Alberta, Dept Lab Med & Pathol, Edmonton, AB, Canada
[14] Vilnius Univ, Vilnius Univ Hosp Santara Clin, Natl Ctr Pathol, Vilnius, Lithuania
[15] Univ Calif Davis, Med Ctr, Dept Med Pathol & Lab Med, Sacramento, CA 95817 USA
[16] Poundbury Canc Inst, Canc Diagnost Qual Assurance Serv CIC, Poundbury, DT, England
[17] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA USA
[18] Queens Univ, Dept Pathol & Mol Med, Kingston, ON, Canada
[19] Univ Michigan, Dept Internal Med, Ctr Comprehens Canc, Breast Oncol Program, Ann Arbor, MI 48109 USA
[20] Inst Canc Res, London, England
关键词
D O I
10.1038/s41379-018-0109-4
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The nuclear proliferation biomarker Ki67 has potential prognostic, predictive, and monitoring roles in breast cancer. Unacceptable between-laboratory variability has limited its clinical value. The International Ki67 in Breast Cancer Working Group investigated whether Ki67 immunohistochemistry can be analytically validated and standardized across laboratories using automated machine-based scoring. Sets of pre-stained core-cut biopsy sections of 30 breast tumors were circulated to 14 laboratories for scanning and automated assessment of the average and maximum percentage of tumor cells positive for Ki67. Seven unique scanners and 10 software platforms were involved in this study. Pre-specified analyses included evaluation of reproducibility between all laboratories (primary) as well as among those using scanners from a single vendor (secondary). The primary reproducibility metric was intraclass correlation coefficient between laboratories, with success considered to be intraclass correlation coefficient > 0.80. Intraclass correlation coefficient for automated average scores across 16 operators was 0.83 (95% credible interval: 0.73-0.91) and intraclass correlation coefficient for maximum scores across 10 operators was 0.63 (95% credible interval: 0.44-0.80). For the laboratories using scanners from a single vendor (8 score sets), intraclass correlation coefficient for average automated scores was 0.89 (95% credible interval: 0.81-0.96), which was similar to the intraclass correlation coefficient of 0.87 (95% credible interval: 0.81-0.93) achieved using these same slides in a prior visual-reading reproducibility study. Automated machine assessment of average Ki67 has the potential to achieve between-laboratory reproducibility similar to that for a rigorously standardized pathologist-based visual assessment of Ki67. The observed intraclass correlation coefficient was worse for maximum compared to average scoring methods, suggesting that maximum score methods may be suboptimal for consistent measurement of proliferation. Automated average scoring methods show promise for assessment of Ki67 scoring, but requires further standardization and subsequent clinical validation.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [21] A novel model for Ki67 assessment in breast cancer
    Quinci Romero
    Pär-Ola Bendahl
    Mårten Fernö
    Dorthe Grabau
    Signe Borgquist
    Diagnostic Pathology, 9
  • [22] Ki67 Assessment in Breast Cancer: Are We There Yet?
    Reis-Filho, Jorge S.
    Davidson, Nancy E.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2021, 113 (07): : 797 - 798
  • [23] A novel model for Ki67 assessment in breast cancer
    Romero, Quinci
    Bendahl, Par-Ola
    Ferno, Marten
    Grabau, Dorthe
    Borgquist, Signe
    DIAGNOSTIC PATHOLOGY, 2014, 9
  • [24] Tumor heterogeneity impairs robustness of Ki67 scoring in breast cancer
    Nijenhuis, Matthijs V.
    Groen, Emilie
    Dekker, Tim J.
    Drukker, Caroline A.
    Sanders, J.
    Smit, V. T.
    Linn, S.
    Rutgers, E. J.
    Wesseling, J.
    CANCER RESEARCH, 2015, 75
  • [25] Impact of tumour heterogeneity on the robustness of Ki67 scoring in breast cancer
    Nijenhuis, M. V.
    Drukker, C. A.
    Sanders, J.
    Linn, S. C.
    Rutgers, E. J. T.
    Wesseling, J.
    EUROPEAN JOURNAL OF CANCER, 2014, 50 : S194 - S194
  • [26] Prognostic Significance of the Ki67 Scoring Categories in Breast Cancer Subgroups
    Niikura, Naoki
    Masuda, Shinobu
    Kumaki, Nobue
    Tang Xiaoyan
    Terada, Mizuho
    Terao, Mayako
    Iwamoto, Takayuki
    Oshitanai, Risa
    Morioka, Toru
    Tuda, Banri
    Okamura, Takuho
    Saito, Yuki
    Suzuki, Yasuhiro
    Tokuda, Yutaka
    CLINICAL BREAST CANCER, 2014, 14 (05) : 323 - 329
  • [27] High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
    Abubakar, Mustapha
    Howat, William J.
    Daley, Frances
    Zabaglo, Lila
    McDuffus, Leigh-Anne
    Blows, Fiona
    Coulson, Penny
    Ali, H. Raza
    Benitez, Javier
    Milne, Roger
    Brenner, Herman
    Stegmaier, Christa
    Mannermaa, Arto
    Chang-Claude, Jenny
    Rudolph, Anja
    Sinn, Peter
    Couch, Fergus J.
    Tollenaar, Rob A. E. M.
    Devilee, Peter
    Figueroa, Jonine
    Sherman, Mark E.
    Lissowska, Jolanta
    Hewitt, Stephen
    Eccles, Diana
    Hooning, Maartje J.
    Hollestelle, Antoinette
    Martens, John W. M.
    van Deurzen, Carolien H. M.
    Bolla, Manjeet K.
    Wang, Qin
    Jones, Michael
    Schoemaker, Minouk
    Broeks, Annegien
    van Leeuwen, Flora E.
    Van't Veer, Laura
    Swerdlow, Anthony J.
    Orr, Nick
    Dowsett, Mitch
    Easton, Douglas
    Schmidt, Marjanka K.
    Pharoah, Paul D.
    Garcia-Closas, Montserrat
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2016, 2 (03): : 138 - 153
  • [28] An interobserver reproducibility analysis of size-set semiautomatic counting for Ki67 assessment in breast cancer
    Wang, Yi-xing
    Wang, Yuan-yuan
    Yang, Cheng-gang
    Bu, Hong
    Yang, Wen-tao
    Wang, Li
    Xu, Wen-mang
    Zhao, Xi-long
    Zhao, Wen-xing
    Li, Lei
    Song, Shu-ling
    Yang, Ju-lun
    BREAST, 2020, 49 : 225 - 232
  • [29] Ki67 and proliferation in breast cancer
    Pathmanathan, Nirmala
    Balleine, Rosemary L.
    JOURNAL OF CLINICAL PATHOLOGY, 2013, 66 (06) : 512 - 516
  • [30] Analytical validation of a standardized scoring protocol for Ki67 assessed on breast excision whole sections: An international multicenter collaboration
    Nielsen, Torsten O.
    Leung, Samuel C. Y.
    Zabaglo, Lila A.
    Arun, Indu
    Badve, Sunil S.
    Bane, Anita L.
    Bartlet, John M. S.
    Borgquist, Signe
    Chang, Martin C.
    Dodson, Andrew
    Ehinger, Anna
    Fineberg, Susan
    Focke, Cornelia M.
    Gao, Dongxia
    Gown, Allen M.
    Gutierrez, Carolina
    Hugh, Judith C.
    Kos, Zuzana
    Laenkholm, Anne-Vibeke
    Mastropasqua, Mauro G.
    Moriya, Takuya
    Nofech-Mozes, Sharon
    Osborne, C. Kent
    Penault-Llorca, Frederique M.
    Piper, Tammy
    Sakatani, Takashi
    Salgado, Roberto
    Starczynski, Jane
    Sugie, Tomoharu
    van der Vegt, Bert
    Viale, Giuseppe
    Hayes, Daniel F.
    McShane, Lisa M.
    Dowsett, Mitch
    CANCER RESEARCH, 2018, 78 (04)