A Stable Cross-Linked Binder Network for SnO2 Anode with Enhanced Sodium-Ion Storage Performance

被引:15
作者
Wei, Yanjie [1 ,2 ]
Wang, Zhijie [1 ]
Ye, Heng [1 ,2 ]
Mou, Jian [1 ,2 ]
Lei, Danni [1 ]
Liu, Yong [3 ]
Lv, Wei [1 ]
Li, Baohua [1 ]
Kang, Feiyu [1 ,2 ]
He, Yan-Bing [1 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Engn Lab Next Generat Power & Energy Storage Batt, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Lab Adv Mat, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Henan Univ Sci & Technol, Collaborat Innovat Ctr Nonferrous Met Henan Provi, Sch Mat Sci & Engn, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-Linked Binder; Polyacrylic Acid; SnO2; Anode; Sodium-In Batteries; Soluble Starch; LITHIUM-ION; HIGH-CAPACITY; ENERGY-STORAGE; SILICON ANODES; SUPERIOR RATE; NA-STORAGE; BATTERIES; CARBON; CHALLENGES; INSERTION;
D O I
10.1002/slct.201702273
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stable binder network of anode is essential for the enhanced cycling performance of lithium ion battery electrode especially for SnO2 anode, which has a big volume expansion/shrink during cycling. Here, we designed a cross-linked polymer adhesive networks for SnO2 anode of sodium-ion battery by utilizing esterification reaction of PAA (Polyacrylic acid) and SS (soluble starch). The cross-linked adhesive networks can effectively enhance the contact between conductive agent and SnO2 particles, meanwhile serve as a buffer matrix of the expansion of SnO2 during cycling and a protecting layer to reduce the contact of SnO2 anode and electrolyte. As a result, a stable specific capacity of 370 mA h g(-1) of the PAA-SS@SnO2 anode was obtained at a current density of 0.1 Ag-1 after 150 cycles, while the specific capacity of PVDF@SnO2 anode is only 200 mA hg(-1) after 50 cycles. This cross-linked adhesive networks present an effective and universal approach for application of pure SnO2 as high performance anode of sodium ion batteries.
引用
收藏
页码:11365 / 11369
页数:5
相关论文
共 42 条
[1]   Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery [J].
Ao, Xiang ;
Jiang, Jianjun ;
Ruan, Yunjun ;
Li, Zhishan ;
Zhang, Yi ;
Sun, Jianwu ;
Wang, Chundong .
JOURNAL OF POWER SOURCES, 2017, 359 :340-348
[2]   Germanium as negative electrode material for sodium-ion batteries [J].
Baggetto, Loic ;
Keum, Jong K. ;
Browning, James F. ;
Veith, Gabriel M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 :41-44
[3]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[4]  
CHEN WH, 2017, MAT CHEM A, V5, P10027, DOI DOI 10.1039/C7TA01634D
[5]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[6]   Reversible Insertion of Sodium in Tin [J].
Ellis, L. D. ;
Hatchard, T. D. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1801-A1805
[7]   Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries [J].
Gu, Meng ;
Kushima, Akihiro ;
Shao, Yuyan ;
Zhang, Ji-Guang ;
Liu, Jun ;
Browning, Nigel D. ;
Li, Ju ;
Wang, Chongmin .
NANO LETTERS, 2013, 13 (11) :5203-5211
[8]   A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4 [J].
Hariharan, Srirama ;
Saravanan, Kuppan ;
Ramar, Vishwanathan ;
Balaya, Palani .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2945-2953
[9]   Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties [J].
Islam, M. Saiful ;
Fisher, Craig A. J. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :185-204
[10]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721