Random Fourier Approximation of the Kernel Function in Programmable Networks
被引:0
作者:
Guo, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R ChinaYunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
Guo, Wei
[1
]
He, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R ChinaYunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
He, Yue
[1
]
Chen, Hexiong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R ChinaYunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
Chen, Hexiong
[1
]
Hang, Feilu
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R ChinaYunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
Hang, Feilu
[1
]
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Wiscred Commun Co Ltd, Dept Tech Dev, Chengdu 610043, Peoples R ChinaYunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
Zhang, Jun
[2
]
Shorman, Samer
论文数: 0引用数: 0
h-index: 0
机构:
Appl Sci Univ, Coll Arts & Sci, Al Eker, BahrainYunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
Shorman, Samer
[3
]
机构:
[1] Yunnan Power Grid Co Ltd, Informat Ctr, Kunming 650000, Yunnan, Peoples R China
[2] Sichuan Wiscred Commun Co Ltd, Dept Tech Dev, Chengdu 610043, Peoples R China
[3] Appl Sci Univ, Coll Arts & Sci, Al Eker, Bahrain
Random Fourier features represent one of the most influential and wide-spread techniques in machine learning to scale up kernel algorithms. As the methods based on random Fourier approximation of the kernel function can overcome the shortcomings of machine learning methods that require a large number of labeled sample, it is effective to be applied to the practical areas where samples are difficult to obtain. Network traffic forwarding policy making is one such practical application, and it is widely concerned in the programmable networks. With the advantages of kernel techniques and random Fourier features, this paper proposes an application of network traffic forwarding policy making method based on random Fourier approximation of kernel function in programmable networks to realize traffic forwarding policy making to improve the security of networks. The core of the method is to map traffic forwarding features to Hilbert high-dimensional space through random Fourier transfolin, and then uses the principle of maximum interval to detect adversarial samples. Compared with the traditional kernel function method, it improves the algorithm efficiency from square efficiency to linear efficiency. The AUC on the data set from real-world network reached 0.9984, showing that the method proposed can realize traffic forwarding policy making effectively to improve the security of programmable networks.
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USA
Koc, Levent
;
Mazzuchi, Thomas A.
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USA
Mazzuchi, Thomas A.
;
Sarkani, Shahram
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USA
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USA
Koc, Levent
;
Mazzuchi, Thomas A.
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USA
Mazzuchi, Thomas A.
;
Sarkani, Shahram
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20057 USA