Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications

被引:13
|
作者
Aguilar, Jean-Philippe [1 ]
Korbel, Jan [2 ,3 ,4 ]
机构
[1] IBRED Banque Populaire, Modeling Dept, 18 Quai Rapee, F-75012 Paris, France
[2] Med Univ Vienna, Sect Sci Complex Syst, Ctr Med Stat Informat & Intelligent Syst CeMSIIS, Spitalgasse 23, A-1090 Vienna, Austria
[3] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[4] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic
基金
奥地利科学基金会;
关键词
space-time fractional diffusion; European option pricing; Mellin transform; multidimensional complex analysis;
D O I
10.3390/fractalfract2010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Series representAtion of the Pricing Formula for the EuropeaN Option Driven by Space-Time Fractional Diffusion
    Jean-Philippe Aguilar
    Cyril Coste
    Jan Korbel
    Fractional Calculus and Applied Analysis, 2018, 21 : 981 - 1004
  • [2] SERIES REPRESENTATION OF THE PRICING FORMULA FOR THE EUROPEAN OPTION DRIVEN BY SPACE-TIME FRACTIONAL DIFFUSION
    Aguilar, Jean-Philippe
    Coste, Cyril
    Korbel, Jan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 981 - 1004
  • [3] On the numerical solution of space-time fractional diffusion models
    Hanert, Emmanuel
    COMPUTERS & FLUIDS, 2011, 46 (01) : 33 - 39
  • [4] Space-time fractional diffusion in cell movement models with delay
    Estrada-Rodriguez, Gissell
    Gimperlein, Heiko
    Painter, Kevin J.
    Stocek, Jakub
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (01): : 65 - 88
  • [5] Discrete random walk models for space-time fractional diffusion
    Gorenflo, R
    Mainardi, F
    Moretti, D
    Pagnini, G
    Paradisi, P
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 521 - 541
  • [6] SPACE-TIME DUALITY FOR FRACTIONAL DIFFUSION
    Baeumer, Boris
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (04) : 1100 - 1115
  • [7] A space-time fractional derivative model for European option pricing with transaction costs in fractal market
    Song, Lina
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 123 - 130
  • [8] Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations
    Aguilar, Jean-Philippe
    Korbel, Jan
    Luchko, Yuri
    MATHEMATICS, 2019, 7 (09)
  • [9] Discrete and continuous random walk models for space-time fractional diffusion
    Gorenflo, R
    Vivoli, A
    Mainardi, F
    NONLINEAR DYNAMICS, 2004, 38 (1-4) : 101 - 116
  • [10] Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion
    R. Gorenflo
    A. Vivoli
    F. Mainardi
    Journal of Mathematical Sciences, 2006, 132 (5) : 614 - 628