FINITE ELEMENT SIMULATION OF VISCOELASTIC FLUID-STRUCTURE INTERACTION

被引:0
作者
Drobny, Alexander [1 ]
Friedmann, Elfriede [1 ]
机构
[1] Univ Kassel, Inst Math, Heinrich Plett Str 40, Kassel, Germany
来源
TOPICAL PROBLEMS OF FLUID MECHANICS 2021 | 2021年
关键词
Fluid-Structure Interaction; Viscoelasticity; Finite Element; FLOW;
D O I
10.14311/TPFM.2021.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The research of fluid-structure interaction (FSI) problems is a continuously growing field. We present a numerical solution method for viscoelastic FSI problems employing the arbitrary Lagrangian Eulerian framework. We derive a monolithic variational formulation which allows a robust solution with Newton's method. Temporal discretization is based on the shifted Crank-Nicholson scheme and spatial discretization is done using the finite element method. We validate the numerical implementation on well-known benchmark problems and perform simulations similar to a recent experiment in the literature on a human eye geometry.
引用
收藏
页码:40 / 47
页数:8
相关论文
共 16 条
  • [1] deal. II - A general-purpose object-oriented finite element library
    Bangerth, W.
    Hartmann, R.
    Kanschat, G.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):
  • [2] Bangerth Wolfgang, 2013, ADAPTIVE FINITE ELEM
  • [3] AN ARBITRARY LAGRANGIAN-EULERIAN FINITE-ELEMENT METHOD FOR TRANSIENT DYNAMIC FLUID STRUCTURE INTERACTIONS
    DONEA, J
    GUILIANI, S
    HALLEUX, JP
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 33 (1-3) : 689 - 723
  • [4] The flow of an Oldroyd-B fluid past a cylinder in a channel:: adaptive viscosity vorticity (DAVSS-ω) formulation
    Dou, HS
    Phan-Thien, N
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 87 (01) : 47 - 73
  • [5] Material properties of the posterior human sclera
    Grytz, Rafael
    Fazio, Massimo A.
    Girard, Michael J. A.
    Libertiaux, Vincent
    Bruno, Luigi
    Gardiner, Stuart
    Girkin, Christopher A.
    Downs, J. Crawford
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 29 : 602 - 617
  • [6] FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .4. ERROR ANALYSIS FOR 2ND-ORDER TIME DISCRETIZATION
    HEYWOOD, JG
    RANNACHER, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) : 353 - 384
  • [7] Flow of a Burgers fluid due to time varying loads on deforming boundaries
    Hron, J.
    Rajagopal, K. R.
    Tuma, K.
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2014, 210 : 66 - 77
  • [8] Richter T., 2017, Fluid-Structure Interactions: Models, Analysis, and Finite Elements
  • [9] On the Spatiotemporal Material Anisotropy of the Vitreous Body in Tension and Compression
    Shah, Nihar S.
    Beebe, David C.
    Lake, Spencer P.
    Filas, Benjamen A.
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2016, 44 (10) : 3084 - 3095
  • [10] SIMO JC, 1985, COMPUT METHOD APPL M, V51, P177, DOI 10.1016/0045-7825(85)90033-7