Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation

被引:30
作者
Dutta, Sourav [1 ]
Zografos, Odysseas [2 ,3 ]
Gurunarayanan, Surya [2 ,3 ]
Radu, Iuliana [2 ]
Soree, Bart [2 ,3 ,4 ]
Catthoor, Francky [2 ]
Naeemi, Azad [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Imec, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, ESAT, B-3001 Leuven, Belgium
[4] Univ Antwerp, Phys Dept CMT, B-2020 Antwerp, Belgium
关键词
SURFACE-PLASMONS; LOGIC GATES; ELECTRICAL EXCITATION; SLOT; PHOTODETECTION; PROPAGATION;
D O I
10.1038/s41598-017-17954-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 mu m(2) for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
Amaru L, P 51 ANN DES AUT C, P1
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Ultrafast surface plasmon-polariton logic gates and half-adder [J].
Birr, Tobias ;
Zywietz, Urs ;
Chhantyal, Parva ;
Chichkov, Boris N. ;
Reinhardt, Carsten .
OPTICS EXPRESS, 2015, 23 (25) :31755-31765
[4]   Scaling for gap plasmon based waveguides [J].
Bozhevolnyi, Sergey I. ;
Jung, Jesper .
OPTICS EXPRESS, 2008, 16 (04) :2676-2684
[5]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[6]   Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides [J].
Cai, Wenshan ;
Shin, Wonseok ;
Fan, Shanhui ;
Brongersma, Mark L. .
ADVANCED MATERIALS, 2010, 22 (45) :5120-+
[7]   Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators [J].
Cai, Wenshan ;
White, Justin S. ;
Brongersma, Mark L. .
NANO LETTERS, 2009, 9 (12) :4403-4411
[8]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[9]   Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna [J].
Cazier, N. ;
Buret, M. ;
Uskov, A. V. ;
Markey, L. ;
Arocas, J. ;
Des Francs, G. Colas ;
Bouhelier, A. .
OPTICS EXPRESS, 2016, 24 (04) :3873-3884
[10]   Highly Efficient Interfacing of Guided Plasmons and Photons in Nanowires [J].
Chen, Xue-Wen ;
Sandoghdar, Vahid ;
Agio, Mario .
NANO LETTERS, 2009, 9 (11) :3756-3761