Stability and reconstruction for an inverse problem for the heat equation

被引:34
作者
Bryan, K [1 ]
Caudill, LF
机构
[1] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[2] Univ Richmond, Dept Math & Comp Sci, Richmond, VA 23173 USA
关键词
D O I
10.1088/0266-5611/14/6/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the inverse problem of determining the shape of some unknown portion of the boundary of a region Omega from measurements of the Cauchy data for solutions to the heat equation on Omega. By suitably linearizing the inverse problem we obtain uniqueness and continuous dependence results. We propose an algorithm for recovering estimates of the unknown portion of the surface and use the insight gained from a detailed analysis of the inverse problem to regularize the inversion. Several computational examples are presented.
引用
收藏
页码:1429 / 1453
页数:25
相关论文
共 9 条
  • [1] BOUNDARY ESTIMATION PROBLEMS ARISING IN THERMAL TOMOGRAPHY
    BANKS, HT
    KOJIMA, F
    WINFREE, WP
    [J]. INVERSE PROBLEMS, 1990, 6 (06) : 897 - 921
  • [2] An inverse problem in thermal imaging
    Bryan, K
    Caudill, LF
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (03) : 715 - 735
  • [3] BRYAN K, IN PRESS ELECT J DIF
  • [4] BRYAN K, 1997, J SYST ESTIMAT CONTR, V7, P1
  • [5] COURANT R, 1989, METHODS MATH PHYSICS
  • [6] INVERSE SCATTERING ALGORITHM APPLIED TO INFRARED THERMAL-WAVE IMAGES
    CROWTHER, DJ
    FAVRO, LD
    KUO, PK
    THOMAS, RL
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 74 (09) : 5828 - 5834
  • [7] FAVRO LD, 1994, NATO ADV SCI INST SE, V262, P187
  • [8] FAVRO LD, 1996, REV PROGR QNDE, V15
  • [9] ELECTRIC-CURRENT COMPUTED-TOMOGRAPHY AND EIGENVALUES
    GISSER, DG
    ISAACSON, D
    NEWELL, JC
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) : 1623 - 1634