Synchronization analysis of delayed complex networks with time-varying couplings

被引:44
作者
Li, Ping [1 ]
Yi, Zhang [1 ]
机构
[1] Univ Elect Sci & Technol China, Computat Intelligence Lab, Chengdu 610054, Peoples R China
关键词
synchronization; complex networks; time delay; linear stability;
D O I
10.1016/j.physa.2008.02.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new method is presented to analyze the linear stability of the synchronized state in arbitrarily coupled complex dynamical systems with time delays. The coupling configurations are not restricted to the symmetric and irreducible connections or the non-negative off-diagonal links. The stability criteria are obtained by using Lyapunov-Krasovskii functional method and subspace projection method. These criteria reveal the relationship between coupling matrices and stability of the dynamical networks. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3729 / 3737
页数:9
相关论文
共 32 条
[11]   Synchronized chaos in local cortical circuits [J].
Hansel, D .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (04) :403-415
[12]   Synchronization in general complex dynamical networks with coupling delays [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 343 :263-278
[13]   Chaos synchronization of general complex dynamical networks [J].
Lü, JH ;
Yu, XH ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 334 (1-2) :281-302
[14]   A time-varying complex dynamical network model and its controlled synchronization criteria [J].
Lü, JH ;
Chen, GR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (06) :841-846
[15]  
Lü JH, 2004, DYNAM CONT DIS SER B, V11A, P70
[16]   Synchronization analysis of linearly coupled networks of discrete time systems [J].
Lu, WL ;
Chen, TP .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 198 (1-2) :148-168
[17]   Dynamics on complex networks and applications [J].
Motter, Adilson E. ;
Matias, Manuel A. ;
Kurths, Juergen ;
Ott, Edward .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) :VII-VIII
[18]   Enhancing complex-network synchronization [J].
Motter, AE ;
Zhou, CS ;
Kurths, J .
EUROPHYSICS LETTERS, 2005, 69 (03) :334-340
[19]  
Newman M., 2006, STRUCTURE DYNAMICS N
[20]   Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? [J].
Nishikawa, T ;
Motter, AE ;
Lai, YC ;
Hoppensteadt, FC .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)