A spectral collocation method for multidimensional nonlinear weakly singular Volterra integral equation

被引:12
作者
Wei, Yunxia [1 ]
Chen, Yanping [2 ]
Shi, Xiulian [3 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Hangzhou 310018, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
基金
中国国家自然科学基金;
关键词
Multidimensional nonlinear Volterra integral equation; Chebyshev collocation discretization; Multidimensional Gauss quadrature formula; Convergence analysis; RUNGE-KUTTA METHODS; CONVERGENCE ANALYSIS; POLYNOMIAL-APPROXIMATION; ORDER;
D O I
10.1016/j.cam.2017.09.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the convergence properties of Chebyshev spectral collocation method when used to approximate the solution of multidimensional nonlinear Volterra integral equation of the second kind with a weakly singular kernel. We consider the case that the underlying solution is sufficiently smooth. The Chebyshev collocation discretization is proposed for this equation. In the present paper, we provide a rigorous error analysis which justifies that the errors of approximate solution decay exponentially in weighted L-2 norm and L-infinity norm. Numerical results are presented to demonstrate the effectiveness of the spectral method. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2014, COMPUT MATH MODEL
[2]   He's homotopy perturbation method for systems of integro-differential equations [J].
Biazar, J. ;
Ghazvini, H. ;
Eslami, M. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1253-1258
[3]  
Biazar J., 2012, Journal of King Saud University Science, V24, P211, DOI 10.1016/j.jksus.2010.08.015
[4]   Application of homotopy perturbation method for systems of Volterra integral equations of the first kind [J].
Biazar, J. ;
Eslami, M. ;
Aminikhah, H. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :3020-3026
[5]  
Biazar J., 2011, INT J PHYS SCI, V6, P1207
[6]  
BRUNNER H, 1984, MATH COMPUT, V42, P95, DOI 10.1090/S0025-5718-1984-0725986-6
[7]   hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations [J].
Brunner, H ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :224-245
[8]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[9]   A NOTE ON JACOBI SPECTRAL-COLLOCATION METHODS FOR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS WITH SMOOTH SOLUTIONS [J].
Chen, Yanping ;
Li, Xianjuan ;
Tang, Tao .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (01) :47-56
[10]   CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH A WEAKLY SINGULAR KERNEL [J].
Chen, Yanping ;
Tang, Tao .
MATHEMATICS OF COMPUTATION, 2010, 79 (269) :147-167