Singular rank one perturbations

被引:0
|
作者
Astaburuaga, M. A. [1 ]
Cortes, V. H. [1 ]
Fernandez, C. [1 ]
Del Rio, R. [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Univ Nacl Autonoma Mexico, IIMAS, Mexico City, DF, Mexico
关键词
D O I
10.1063/5.0061250
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, A = B + V represents a self-adjoint operator acting on a Hilbert space H. We set a general theoretical framework and obtain several results for singular perturbations of A of the type A(beta) = A + beta tau*tau for tau being a functional defined in a subspace of H. In particular, we apply these results to H-beta = -Delta + V + beta|delta ><delta|, where delta is the singular perturbation given by delta(phi) = integral(S)phi d sigma, where S is a suitable hypersurface in R-n. Using the fact that the singular perturbation tau*tau is a sort of rank one perturbation of the operator A, it is possible to prove the invariance of the essential spectrum of A under these singular perturbations. The main idea is to apply an adequate Krein's formula in this singular framework. As an additional result, we found the corresponding relationship between the Green's functions associated with the operators H-0 = Delta + V and H-beta, and we give a result about the existence of a pure point spectrum (eigenvalues) of H-beta. We also study the case beta goes to infinity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Rank one perturbations and singular integral operators
    Liaw, Constanze
    Treil, Sergei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (06) : 1947 - 1975
  • [2] ON NONSYMMETRIC RANK ONE SINGULAR PERTURBATIONS OF SELFADJOINT OPERATORS
    Dudkin, Mykola
    Vdovenko, Tetiana
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2016, 22 (02): : 137 - 151
  • [3] High Order Singular Rank One Perturbations of a Positive Operator
    A. Dijksma
    P. Kurasov
    Yu. Shondin
    Integral Equations and Operator Theory, 2005, 53 : 209 - 245
  • [4] Rank-One Singular Perturbations with a Dual Pair of Eigenvalues
    Sergio Albeverio
    Mykola Dudkin
    Volodymyr Koshmanenko
    Letters in Mathematical Physics, 2003, 63 : 219 - 228
  • [5] Rank-one singular perturbations with a dual pair of eigenvalues
    Albeverio, S
    Dudkin, MA
    Koshmanenko, V
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (03) : 219 - 228
  • [6] High order singular rank one perturbations of a positive operator
    Dijksma, A
    Kurasov, P
    Shondin, Y
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (02) : 209 - 245
  • [7] Singular Integrals, Rank One Perturbations and Clark Model in General Situation
    Liaw, Constanze
    Treil, Sergei
    HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, BANACH SPACES, AND OPERATOR THEORY, VOL 2: CELEBRATING CORA SADOSKY'S LIFE, 2017, 5 : 85 - 132
  • [8] Finite rank perturbations of singular spectra
    Poltoratski, AG
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (09) : 421 - 436
  • [9] FINITE RANK PERTURBATIONS OF SINGULAR SPECTRA
    HOWLAND, JS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (04) : 634 - 636
  • [10] A note on a conjecture concerning rank one perturbations of singular M-matrices
    Anehila, B.
    Ran, A. C. M.
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1529 - 1537