Enhanced Dendritic Compartmentalization in Human Cortical Neurons

被引:179
作者
Beaulieu-Laroche, Lou [1 ]
Toloza, Enrique H. S. [1 ]
van der Goes, Marie-Sophie [1 ]
Lafourcade, Mathieu [1 ]
Barnagian, Derrick [1 ]
Williams, Ziv M. [2 ]
Eskandar, Emad N. [2 ]
Frosch, Matthew P. [3 ]
Cash, Sydney S. [4 ,5 ]
Harnett, Mark T. [1 ]
机构
[1] MIT, Dept Brain & Cognit Sci, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Dept Neurosurg, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, CS Kubik Lab Neuropathol, Boston, MA 02114 USA
[4] Harvard Med Sch, Dept Neurol, Boston, MA USA
[5] Massachusetts Gen Hosp, Boston, MA 02114 USA
基金
加拿大自然科学与工程研究理事会;
关键词
NEOCORTICAL PYRAMIDAL NEURONS; VOLTAGE-CLAMP; IN-VIVO; SYNAPTIC INTEGRATION; ACTION-POTENTIALS; CORTEX NEURONS; MECHANISMS; CHANNELS; SPIKES; INPUT;
D O I
10.1016/j.cell.2018.08.045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation.
引用
收藏
页码:643 / +
页数:23
相关论文
共 57 条
[1]   Postnatal Development of Dendritic Synaptic Integration in Rat Neocortical Pyramidal Neurons [J].
Atkinson, Susan E. ;
Williams, Stephen R. .
JOURNAL OF NEUROPHYSIOLOGY, 2009, 102 (02) :735-751
[2]   Dendritic Spines Prevent Synaptic Voltage Clamp [J].
Beaulieu-Laroche, Lou ;
Harnett, Mark T. .
NEURON, 2018, 97 (01) :75-+
[3]  
Carnevale T., 2006, NEURON BOOK
[4]   Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity [J].
Cichon, Joseph ;
Gan, Wen-Biao .
NATURE, 2015, 520 (7546) :180-U80
[5]   ELECTRO-PHYSIOLOGICAL PROPERTIES OF NEOCORTICAL NEURONS INVITRO [J].
CONNORS, BW ;
GUTNICK, MJ ;
PRINCE, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (06) :1302-1320
[6]   Microstructure of the neocortex: Comparative aspects [J].
DeFelipe, J ;
Alonso-Nanclares, L ;
Arellano, JI .
JOURNAL OF NEUROCYTOLOGY, 2002, 31 (3-5) :299-316
[7]   The evolution of the brain, the human nature of cortical circuits, and intellectual creativity [J].
DeFelipe, Javier .
FRONTIERS IN NEUROANATOMY, 2011, 5
[8]   Temporal Dynamics of L5 Dendrites in Medial Prefrontal Cortex Regulate Integration Versus Coincidence Detection of Afferent Inputs [J].
Dembrow, Nikolai C. ;
Zemelman, Boris V. ;
Johnston, Daniel .
JOURNAL OF NEUROSCIENCE, 2015, 35 (11) :4501-4514
[9]   Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons [J].
Dembrow, Nikolai C. ;
Chitwood, Raymond A. ;
Johnston, Daniel .
JOURNAL OF NEUROSCIENCE, 2010, 30 (50) :16922-16937
[10]  
Elston GN, 2001, J NEUROSCI, V21