An efficient numerical technique for variable order time fractional nonlinear Klein-Gordon equation
被引:20
作者:
论文数: 引用数:
h-index:
机构:
Hassani, H.
[1
]
Machado, J. A. Tenreiro
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Porto, Inst Engn, Dept Elect Engn, R Dr Antonio Bernardino Almeida 431, P-4249015 Porto, PortugalTon Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
Machado, J. A. Tenreiro
[2
]
Naraghirad, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Yasuj, Dept Math, Yasuj, IranTon Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
Naraghirad, E.
[3
]
机构:
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Polytech Porto, Inst Engn, Dept Elect Engn, R Dr Antonio Bernardino Almeida 431, P-4249015 Porto, Portugal
Variable order time fractional nonlinear;
Klein-Gordon equation;
Variable order fractional derivatives;
Generalized polynomials;
Operational matrix;
Lagrange multipliers;
Control parameters;
DIFFUSION-WAVE;
LAGRANGE MULTIPLIERS;
COLLOCATION METHOD;
DIFFERENCE SCHEME;
DIFFERENTIATION;
CONVERGENCE;
ALGORITHMS;
UNIQUENESS;
OPERATOR;
D O I:
10.1016/j.apnum.2020.04.001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper studies the variable order time fractional nonlinear Klein-Gordon equation (V-TFNKGE). An optimization method using the Caputo type definition and a set of basis functions, namely the generalized polynomials (GP), is proposed. The solution is expanded in terms of the GP with unknown free coefficients and control parameters. First, a new variable order time fractional operational matrix of the Caputo type for the GP is derived. Then, based on a operational matrix and the Lagrange multipliers, an optimization process achieves the approximate solution. Additionally, the convergence of the proposed method is analyzed and two numerical examples illustrate its good performance. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, GermanyQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Wang, Bin
;
Wu, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
机构:
China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
Yang, Xiao-Jun
;
Tenreiro Machado, J. A.
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Porto, Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida, P-4249015 Oporto, PortugalChina Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, GermanyQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Wang, Bin
;
Wu, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
机构:
China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
Yang, Xiao-Jun
;
Tenreiro Machado, J. A.
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Porto, Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida, P-4249015 Oporto, PortugalChina Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China