On the extraconnectivity of graphs

被引:331
作者
Fabrega, J [1 ]
Fiol, MA [1 ]
机构
[1] UNIV POLITECN CATALUNYA,ETSE TELECOMUNICACIO,DEPT MATEMAT APLICADA & TELEMAT,BARCELONA 08034,SPAIN
关键词
D O I
10.1016/0012-365X(94)00369-T
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a simple connected graph G, let kappa(n) [lambda(n)] be the minimum cardinality of a set of vertices [edges], if any, whose deletion disconnects G and every remaining component has more than n vertices. For instance, the usual connectivity and the superconnectivity of G correspond to kappa(0) and kappa(1), respectively. This paper gives sufficient conditions, relating the diameter of G with its girth, to assure optimum values of these conditional connectivities.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 10 条
[1]   CIRCULANTS AND THEIR CONNECTIVITIES [J].
BOESCH, F ;
TINDELL, R .
JOURNAL OF GRAPH THEORY, 1984, 8 (04) :487-499
[2]  
Bosak J., 1968, J COMB THEORY, V5, P170
[3]  
Chartrand G., 2016, GRAPHS DIGRAPHS
[4]   EXTRACONNECTIVITY OF GRAPHS WITH LARGE GIRTH [J].
FABREGA, J ;
FIOL, MA .
DISCRETE MATHEMATICS, 1994, 127 (1-3) :163-170
[5]   MAXIMALLY CONNECTED DIGRAPHS [J].
FABREGA, J ;
FIOL, MA .
JOURNAL OF GRAPH THEORY, 1989, 13 (06) :657-668
[6]  
FIOL MA, 1990, ARS COMBINATORIA, V29B, P17
[7]   CONDITIONAL CONNECTIVITY [J].
HARARY, F .
NETWORKS, 1983, 13 (03) :347-357
[8]  
Plesnik J., 1974, Acta F. R. N. Univ. Comen. Math., P29
[9]   SUFFICIENT CONDITIONS FOR MAXIMALLY CONNECTED DENSE GRAPHS [J].
SONEOKA, T ;
NAKADA, H ;
IMASE, M ;
PEYRAT, C .
DISCRETE MATHEMATICS, 1987, 63 (01) :53-66
[10]  
SONEOKA T, 1985, P ISCAS85, P811