Filtration Simplification for Persistent Homology via Edge Contraction

被引:1
|
作者
Dey, Tamal K. [1 ]
Slechta, Ryan [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
关键词
Topological data analysis; Persistent homology; Edge contraction; GRAPH MINORS;
D O I
10.1007/s10851-020-00956-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Persistent homology is a popular data analysis technique that is used to capture the changing homology of an indexed sequence of simplicial complexes. These changes are summarized in persistence diagrams. A natural problem is to contract edges in complexes in the initial sequence to obtain a sequence of simplified complexes while controlling the perturbation between the original and simplified persistence diagrams. This paper is an extended version of Dey and Slechta (in: Discrete geometry for computer imagery, Springer, New York, 2019), where we developed two contraction operators for the case where the initial sequence is a filtration. In addition to the content in the original version, this paper presents proofs relevant to the filtration case and develops contraction operators for towers and multiparameter filtrations.
引用
收藏
页码:704 / 717
页数:14
相关论文
共 50 条
  • [1] Filtration Simplification for Persistent Homology via Edge Contraction
    Tamal K. Dey
    Ryan Slechta
    Journal of Mathematical Imaging and Vision, 2020, 62 : 704 - 717
  • [2] Filtration Simplification for Persistent Homology via Edge Contraction
    Dey, Tamal K.
    Slechta, Ryan
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2019, 2019, 11414 : 89 - 100
  • [3] SIMPLIFICATION OF COMPLEXES FOR PERSISTENT HOMOLOGY COMPUTATIONS
    Dlotko, Pawel
    Wagner, Hubert
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2014, 16 (01) : 49 - 63
  • [4] Persistent Homology Computation Using Combinatorial Map Simplification
    Damiand, Guillaume
    Gonzalez-Diaz, Rocio
    COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT, CTIC 2019, 2019, 11382 : 26 - 39
  • [5] Topology-Preserving Triangulation Simplification Algorithm by Edge Contraction
    Ya. S. Pepko
    V. V. Borisenko
    Journal of Mathematical Sciences, 2024, 283 (6) : 929 - 941
  • [6] Mesh simplification with hierarchical shape analysis and iterative edge contraction
    Yan, JQ
    Shi, PF
    Zhang, D
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (02) : 142 - 151
  • [7] Morphological multiparameter filtration and persistent homology in mitochondrial image analysis
    Chung, Yu-Min
    Hu, Chuan-Shen
    Sun, Emily
    Tseng, Henry C.
    PLOS ONE, 2024, 19 (09):
  • [8] Out-of-core extension for mesh simplification based on edge contraction
    Ozaki H.
    Kyota F.
    Kanai T.
    Ozaki, Hiromu, 1600, Institute of Image Electronics Engineers of Japan (45): : 318 - 328
  • [9] Distributing Persistent Homology via Spectral Sequences
    Torras-Casas, Alvaro
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (03) : 580 - 619
  • [10] Coverage in sensor networks via persistent homology
    de Silva, Vin
    Ghrist, Robert
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 339 - 358