Image-domain Noise Reduction with Multiscale Decomposition and Anisotropic Diffusion

被引:0
作者
Tang, Shaojie [1 ,2 ]
Yang, Yi [7 ]
Gong, Yan [3 ]
Huang, Kuidong [4 ]
Niu, Tianye [5 ,6 ]
Tang, Xiangyang [7 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Automat, Xian 710121, Shaanxi, Peoples R China
[2] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Hangzhou 310016, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310009, Zhejiang, Peoples R China
[4] Northwestern Polytech Univ, Minist Educ, Key Lab Contemporary Design & Integrated Mfg Tech, Xian 710072, Shaanxi, Peoples R China
[5] Zhejiang Univ, Sir Run Run Shaw Hosp, Hangzhou 310009, Zhejiang, Peoples R China
[6] Zhejiang Univ, Inst Translat Med, Hangzhou 310009, Zhejiang, Peoples R China
[7] Emory Univ, Dept Radiol & Imaging Sci, Sch Med, Atlanta, GA 30322 USA
来源
2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC) | 2015年
基金
中国国家自然科学基金;
关键词
WEIGHTED LEAST-SQUARES; SCALE-SPACE; COMPUTED-TOMOGRAPHY; RECONSTRUCTION;
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Noise reduction in x-ray computed tomography (CT) is a critical technique for improving the diagnostic quality and saving radiation dose. Here, we propose an image-domain multiscale decomposition and anisotropic diffusion based noise reduction method for clinical CT applications. As used in the projection domain, a practical multiscale decomposition of CT image is first carried out using isotropic diffusion partial differential equation (PDE) in the image domain. Then, the image-domain anisotropic diffusion is adopted to reduce noise in each scale. Finally, in order to compensate for the degradation of image sharpness, an edge compensation step is followed. The performance of the proposed image-domain method for noise reduction is experimentally evaluated and verified using the scan data of an anthropomorphic head phantom acquired by a CT scanner. The preliminary result shows that the proposed image-domain multiscale decomposition-based anisotropic diffusion performs very well in noise reduction.
引用
收藏
页数:5
相关论文
共 23 条
  • [1] [Anonymous], P 11 INT M FULL 3 DI
  • [2] Robust anisotropic diffusion
    Black, MJ
    Sapiro, G
    Marimont, DH
    Heeger, D
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 421 - 432
  • [3] Current concepts - Computed tomography - An increasing source of radiation exposure
    Brenner, David J.
    Hall, Eric J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) : 2277 - 2284
  • [4] Statistical image reconstruction for polyenergetic X-ray computed tomography
    Elbakri, IA
    Fessler, JA
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (02) : 89 - 99
  • [5] Comparing implementations of penalized weighted least-squares sinogram restoration
    Forthmann, Peter
    Koehler, Thomas
    Defrise, Michel
    La Riviere, Patrick
    [J]. MEDICAL PHYSICS, 2010, 37 (11) : 5929 - 5938
  • [6] NONLINEAR ANISOTROPIC FILTERING OF MRI DATA
    GERIG, G
    KUBLER, O
    KIKINIS, R
    JOLESZ, FA
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) : 221 - 232
  • [7] Kozek T, 1996, 4 IEEE INT WORKSH CE, P24
  • [8] An optimal nonorthogonal separation of the anisotropic Gaussian convolution filter
    Lampert, Christoph H.
    Wirjadi, Oliver
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (11) : 3501 - 3513
  • [9] Nonlinear sinogram smoothing for low-dose X-ray CT
    Li, TF
    Li, X
    Wang, J
    Wen, JH
    Lu, HB
    Hsieh, J
    Liang, ZR
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (05) : 2505 - 2513
  • [10] Adaptive nonlocal means filtering based on local noise level for CT denoising
    Li, Zhoubo
    Yu, Lifeng
    Trzasko, Joshua D.
    Lake, David S.
    Blezek, Daniel J.
    Fletcher, Joel G.
    McCollough, Cynthia H.
    Manduca, Armando
    [J]. MEDICAL PHYSICS, 2014, 41 (01)