New analytical solution of the fractal anharmonic oscillator using an ancient Chinese algorithm: Investigating how plasma frequency changes with fractal parameter values

被引:8
作者
Elias-Zuniga, Alex [1 ]
Martinez-Romero, Oscar [1 ]
Palacios-Pineda, Luis M. [2 ]
Olvera-Trejo, Daniel [1 ]
机构
[1] Tecnol Monterrey, Mech Engn & Adv Mat Dept, Sch Engn & Sci, Ave Eugenio Garza Sada 2501, Monterrey 64849, Mexico
[2] Tecnol Nacl Mexico, Inst Tecnol Pachuca, Pachuca, Hidalgo, Mexico
关键词
Anharmonic oscillator; two-scale fractal transform; ancient Chinese algorithm; He's formulation; plasma physics; analytical frequency-amplitude response curve; FRACTIONAL ELECTROMAGNETIC-WAVES; HOMOTOPY PERTURBATION METHOD; PULL-IN INSTABILITY; CALCULUS; MODEL;
D O I
10.1177/14613484211070883
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper uses the two-scale fractal dimension transform and He's formula derived from the ancient Chinese algorithm Ying Bu Zu Shu to find the approximate frequency-amplitude expression of the fractal and forced anharmonic oscillator that can be used to study the nonlinear oscillations produced by the plasma physics fractal structures. The results show how the electron frequency and wavelength change as a function of the plasma physics fractal structure. In fact, if the value of the fractal parameter is decreased, the wavelength increases, and consequently, the system frequency decreases. The introduced solution procedure sheds a bright light on the easy-to-follow steps to obtain an accurate steady-state analytical solution of fractal anharmonic nonlinear oscillators.
引用
收藏
页码:833 / 841
页数:9
相关论文
共 77 条
[1]   New method for solving strong conservative odd parity nonlinear oscillators: Applications to plasma physics and rigid rotator [J].
Abu Hammad, Ma'mon ;
Salas, Alvaro H. ;
El-Tantawy, S. A. .
AIP ADVANCES, 2020, 10 (08)
[2]   Dynamics, Circuitry Implementation and Control of an Autonomous Helmholtz Jerk Oscillator [J].
Ainamon, Cyrille ;
Kingni, Sifeu Takougang ;
Tamba, Victor Kamdoum ;
Orou, Jean Bio Chabi ;
Woafo, Paul .
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (04) :501-511
[3]   Reproducing kernel method for Fangzhu's oscillator for water collection from air [J].
Akgul, Ali ;
Ahmad, Hijaz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
[4]   ON TWO-SCALE DIMENSION AND ITS APPLICATIONS [J].
Aln, Qura Tul ;
He, Ji-Huan .
THERMAL SCIENCE, 2019, 23 (03) :1707-1712
[5]  
Amer T., 2020, Appl Math, V11, P1081, DOI [10.4236/am.2020.1111073, DOI 10.4236/AM.2020.1111073]
[6]   Two Modifications of the Homotopy Perturbation Method for Nonlinear Oscillators [J].
Anjum, Naveed ;
He, Ji-Huan .
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 :1420-1425
[7]  
Bhangale N, 2020, REV MEX FIS, V66, P848, DOI [10.31349/RevMexFis.66.848, 10.31349/revmexfis.66.848]
[8]   Passive elasto-magnetic suspensions: nonlinear models and experimental outcomes [J].
Bonisoli, E. ;
Vigliani, A. .
MECHANICS RESEARCH COMMUNICATIONS, 2007, 34 (04) :385-394
[9]  
Byrd PF., 1953, HDB ELLIPTIC INTEGRA
[10]   Several numerical solution techniques for nonlinear eardrum-type oscillations [J].
Chen, Y. Z. ;
Lin, X. Y. .
JOURNAL OF SOUND AND VIBRATION, 2006, 296 (4-5) :1059-1067