Integrated Analysis of Transcriptome in Cancer Patient-Derived Xenografts

被引:7
作者
Li, Hong [1 ,3 ]
Zhu, Yinjie [2 ]
Tang, Xiaoyan [1 ]
Li, Junyi [1 ]
Li, Yuanyuan [3 ]
Zhong, Zhaomin [3 ]
Ding, Guohui [1 ]
Li, Yixue [1 ,3 ]
机构
[1] Chinese Acad Sci, SIBS, Inst Biochem & Cell Biol, Key Lab Syst Biol, Shanghai 200031, Peoples R China
[2] Shanghai High Sch, Shanghai 200231, Peoples R China
[3] Shanghai Ctr Bioinformat Technol, Shanghai 201203, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 05期
关键词
TUMOR XENOGRAFTS; NUDE-MICE; SIGNATURES; THERAPY; MODELS;
D O I
10.1371/journal.pone.0124780
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patient-derived xenograft (PDX) tumor model is a powerful technology in evaluating anticancer drugs and facilitating personalized medicines. Multiple research centers and commercial companies have put huge efforts into building PDX mouse models. However, PDX models have not been widely available and their molecular features have not been systematically characterized. In this study, we provided a comprehensive survey of PDX transcriptome by integrating analysis of 58 patients involving 8 different tumors. The median correlation coefficient between patients and xenografts is 0.94, which is higher than that between patients and cell line panel or between patients with the same tumor. Major differential gene expressions in PDX occur in the engraftment of human tumor tissue into mice, while gene expressions are relatively stable over passages. 48 genes are frequently differentially expressed in PDX mice of multiple cancers. They are enriched in extracellular matrix and immune response, and some are reported as targets for anticancer drugs. A simulation study showed that expression change between PDX and patient tumor (6%) would result in acceptable change in drug sensitivity (3%). Our findings demonstrate that PDX mice represent the gene-expression and drug-response features of primary tumors effectively, and it is recommended to monitoring the overall expression profiles and drug target genes in clinical application.
引用
收藏
页数:13
相关论文
共 26 条
[1]   Verification of gene expression profiles for colorectal cancer using 12 internet public microarray datasets [J].
Chang, Yu-Tien ;
Yao, Chung-Tay ;
Su, Sui-Lung ;
Chou, Yu-Ching ;
Chu, Chi-Ming ;
Huang, Chi-Shuan ;
Terng, Harn-Jing ;
Chou, Hsiu-Ling ;
Wetter, Thomas ;
Chen, Kang-Hua ;
Chang, Chi-Wen ;
Shih, Yun-Wen ;
Lai, Ching-Huang .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (46) :17476-17482
[2]   Variant GADL1 and Response to Lithium Therapy in Bipolar I Disorder [J].
Chen, C. -H. ;
Lee, C. -S. ;
Lee, M. -T. M. ;
Ouyang, W. -C. ;
Chen, Chiao-Chicy ;
Chong, M. -Y. ;
Wu, J. -Y. ;
Tan, H. K. -L. ;
Lee, Y. -C. ;
Chuo, L. -J. ;
Chiu, N. -Y. ;
Tsang, H. -Y. ;
Chang, T. -J. ;
Lung, F. -W. ;
Chiu, C. -H. ;
Chang, C. -H. ;
Chen, Y. -S. ;
Hou, Y. -M. ;
Chen, Cheng-Chung ;
Lai, T. -J. ;
Tung, C. -L. ;
Chen, C. -Y. ;
Lane, H. -Y. ;
Su, T. -P. ;
Feng, J. ;
Lin, J. -J. ;
Chang, C. -J. ;
Teng, P. -R. ;
Liu, C. -Y. ;
Chen, C. -K. ;
Liu, I. -C. ;
Chen, J. -J. ;
Lu, T. ;
Fan, C. -C. ;
Wu, C. -K. ;
Li, C. -F. ;
Wang, K. H. -T. ;
Wu, L. S. -H. ;
Peng, H. -L. ;
Chang, C. -P. ;
Lu, L. -S. ;
Chen, Y. -T. ;
Cheng, A. T. -A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (02) :119-128
[3]   Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees [J].
Chou, Hsiu-Ling ;
Yao, Chung-Tay ;
Su, Sui-Lun ;
Lee, Chia-Yi ;
Hu, Kuang-Yu ;
Terng, Harn-Jing ;
Shih, Yun-Wen ;
Chang, Yu-Tien ;
Lu, Yu-Fen ;
Chang, Chi-Wen ;
Wahlqvist, Mark L. ;
Wetter, Thomas ;
Chu, Chi-Ming .
BMC BIOINFORMATICS, 2013, 14
[4]   Gene Expression Profiling of Colorectal Tumors and Normal Mucosa by Microarrays Meta-Analysis Using Prediction Analysis of Microarray, Artificial Neural Network, Classification, and Regression Trees [J].
Chu, Chi-Ming ;
Yao, Chung-Tay ;
Chang, Yu-Tien ;
Chou, Hsiu-Ling ;
Chou, Yu-Ching ;
Chen, Kang-Hua ;
Terng, Harn-Jing ;
Huang, Chi-Shuan ;
Lee, Chia-Cheng ;
Su, Sui-Lun ;
Liu, Yao-Chi ;
Lin, Fu-Gong ;
Wetter, Thomas ;
Chang, Chi-Wen .
DISEASE MARKERS, 2014, 2014
[5]   A Primary Xenograft Model of Small-Cell Lung Cancer Reveals Irreversible Changes in Gene Expression Imposed by Culture In vitro [J].
Daniel, Vincent C. ;
Marchionni, Luigi ;
Hierman, Jared S. ;
Rhodes, Jonathan T. ;
Devereux, Wendy L. ;
Rudin, Charles M. ;
Yung, Rex ;
Parmigiani, Giovanni ;
Dorsch, Marion ;
Peacock, Craig D. ;
Watkins, D. Neil .
CANCER RESEARCH, 2009, 69 (08) :3364-3373
[6]   Genome remodelling in a basal-like breast cancer metastasis and xenograft [J].
Ding, Li ;
Ellis, Matthew J. ;
Li, Shunqiang ;
Larson, David E. ;
Chen, Ken ;
Wallis, Johnw. ;
Harris, Christopher C. ;
McLellan, Michael D. ;
Fulton, Robert S. ;
Fulton, Lucinda L. ;
Abbott, Rachel M. ;
Hoog, Jeremy ;
Dooling, David J. ;
Koboldt, Daniel C. ;
Schmidt, Heather ;
Kalicki, Joelle ;
Zhang, Qunyuan ;
Chen, Lei ;
Lin, Ling ;
Wendl, Michael C. ;
McMichael, Joshua F. ;
Magrini, Vincent J. ;
Cook, Lisa ;
McGrath, Sean D. ;
Vickery, Tammi L. ;
Appelbaum, Elizabeth ;
DeSchryver, Katherine ;
Davies, Sherri ;
Guintoli, Therese ;
Lin, Li ;
Crowder, Robert ;
Tao, Yu ;
Snider, Jacqueline E. ;
Smith, Scott M. ;
Dukes, Adam F. ;
Sanderson, Gabriel E. ;
Pohl, Craig S. ;
Delehaunty, Kim D. ;
Fronick, Catrina C. ;
Pape, Kimberley A. ;
Reed, Jerry S. ;
Robinson, Jody S. ;
Hodges, Jennifer S. ;
Schierding, William ;
Dees, Nathan D. ;
Shen, Dong ;
Locke, Devin P. ;
Wiechert, Madeline E. ;
Eldred, James M. ;
Peck, Josh B. .
NATURE, 2010, 464 (7291) :999-1005
[7]   Establishment of Patient-Derived Non-Small Cell Lung Cancer Xenografts as Models for the Identification of Predictive Biomarkers [J].
Fichtner, Iduna ;
Rolff, Jana ;
Soong, Richie ;
Hoffmann, Jens ;
Hammer, Stefanie ;
Sommer, Anette ;
Becker, Michael ;
Merk, Johannes .
CLINICAL CANCER RESEARCH, 2008, 14 (20) :6456-6468
[8]  
Fiebig Heinz-Herbert, 2007, Cancer Genomics & Proteomics, V4, P197
[9]   Tumor Engraftment in Nude Mice and Enrichment in Stroma-Related Gene Pathways Predict Poor Survival and Resistance to Gemcitabine in Patients with Pancreatic Cancer [J].
Garrido-Laguna, Ignacio ;
Uson, Maria ;
Rajeshkumar, N. V. ;
Tan, Aik Choon ;
de Oliveira, Elizabeth ;
Karikari, Collins ;
Villaroel, Maria C. ;
Salomon, Ana ;
Taylor, Gretchen ;
Sharma, Rajni ;
Hruban, Ralph H. ;
Maitra, Anirban ;
Laheru, Daniel ;
Rubio-Viqueira, Belen ;
Jimeno, Antonio ;
Hidalgo, Manuel .
CLINICAL CANCER RESEARCH, 2011, 17 (17) :5793-5800
[10]   Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines [J].
Geeleher, Paul ;
Cox, Nancy J. ;
Huang, R. Stephanie .
GENOME BIOLOGY, 2014, 15 (03)