The effective role of ascorbic acid in the photoelectrocatalytic reduction of CO2 preconcentrated on TiO2 nanotubes modified by ZIF-8

被引:22
作者
Cardoso, J. C. [1 ]
Stulp, S. [2 ]
de Souza, M. K. R. [1 ]
Hudari, F. F. [3 ]
Gubiani, J. R. [4 ]
Frem, R. C. G. [3 ]
Zanoni, M. V. B. [3 ]
机构
[1] Univ Fed Mato Grosso do Sul, Inst Chem, Av Senador Filinto Muller,1555,CP 549, BR-79074460 Campo Grande, MS, Brazil
[2] Univ Vale Taquari Univates, Ctr Sci & Engn, Lajeado, Brazil
[3] Sao Paulo State Univ, UNESP, Inst Chem, Araraquara, SP, Brazil
[4] Univ Sao Paulo, Inst Quim Sao Carlos, CP 780, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Photoelectrocatalysis; Photocatalyst; Methanol; Ethanol; Electron donor agent; CARBON-DIOXIDE; PHOTOELECTROCHEMICAL REDUCTION; PHOTOCATALYTIC DEGRADATION; JUNCTION SEMICONDUCTOR; ELECTRON-DONOR; METHANOL; ARRAYS; PHOTOOXIDATION; OXIDATION; PLATFORM;
D O I
10.1016/j.jelechem.2019.113384
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work is aimed at investigating the effects of ascorbic acid as sacrificial agent in the photoelectrocatalytic reduction of CO2 to alcohol. The results show that the addition of electron donor agent (0.2 mol L-1 ascorbic acid) to the electrolyte (0.1 mol L-1 sodium sulfate pH 4.5) led to an improvement of 22% and 12% in CO2/methanol and CO2/ethanol conversion respectively, after 3 h of photoelectrolysis conducted on TiO2 nanotubes decorated with ZIF-8 nanoparticles under E-app = 0.1 V and UV-Vis irradiation. The photoelectrocatalytic results were compared with photocatalytic, photolytic and electrocatalytic performance. The findings of this work unfold an interesting perspective for the use of sacrificial agent in photoelectrocatalysis and the generation of products of great energetic value from pollutants that cause environmental degradation in systems carried out under constant pressure and low temperature. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 42 条
  • [1] Bessegato C.C., 2016, CORANTES CARACTER QU, P261
  • [2] Bessegato G G., 2014, Modern Electrochemical Methods in Nano, Surface and Corrosion Science, P271, DOI [DOI 10.5772/58333, DOI 10.5772/57202]
  • [3] Self-doped TiO2 nanotube electrodes: A powerful tool as a sensor platform for electroanalytical applications
    Bessegato, Guilherme Garcia
    Hudari, Felipe Fantinato
    Boldrin Zanoni, Maria Valnice
    [J]. ELECTROCHIMICA ACTA, 2017, 235 : 527 - 533
  • [4] Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications
    Bessegato, Guilherme Garcia
    Guaraldo, Thais Tasso
    de Brito, Juliana Ferreira
    Brugnera, Michelle Fernanda
    Boldrin Zanoni, Maria Valnice
    [J]. ELECTROCATALYSIS, 2015, 6 (05) : 415 - 441
  • [5] MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media
    Cardoso, J. C.
    Stulp, S.
    de Brito, J. F.
    Flor, J. B. S.
    Frem, R. C. G.
    Zanoni, M. V. B.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 225 : 563 - 573
  • [6] Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization
    Cardoso, Juliano Carvalho
    Bessegato, Guilherme Garcia
    Boidrin Zanoni, Maria Valnice
    [J]. WATER RESEARCH, 2016, 98 : 39 - 46
  • [7] Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine
    Cardoso, Juliano Carvalho
    Lizier, Thiago Mescoloto
    Boldrin Zanoni, Maria Valnice
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 99 (1-2) : 96 - 102
  • [8] Structural Effects of Nanotubes, Nanowires, and Nanoporous Ti/TiO2 Electrodes on Photoelectrocatalytic Oxidation of 4,4-Oxydianiline
    Cardoso, Juliano Carvalho
    Boldrin Zanoni, Maria Valnice
    [J]. SEPARATION SCIENCE AND TECHNOLOGY, 2010, 45 (11) : 1628 - 1636
  • [9] Zeolitic imidazolate framework materials: recent progress in synthesis and applications
    Chen, Binling
    Yang, Zhuxian
    Zhu, Yanqiu
    Xia, Yongde
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) : 16811 - 16831
  • [10] Chowdhury P, 2017, INORGANICS, V5, DOI 10.3390/inorganics5020034