On Some Classes of Repeated-root Constacyclic Codes of Length a Power of 2 over Galois Rings

被引:14
作者
Dinh, Hai Q. [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Warren, OH 44483 USA
来源
ADVANCES IN RING THEORY | 2010年
关键词
Negacyclic codes; cyclic codes; constacyclic codes; repeated-root codes; dual codes; codes over rings; Hamming distance; homogeneous distance; Galois extension; chain rings; Galois rings; FINITE CHAIN RINGS; Z(4) CYCLIC CODES; NEGACYCLIC CODES; EVEN LENGTH; ALTERNANT CODES; 2(S); DISTRIBUTIONS; PREPARATA; DISTANCES; KERDOCK;
D O I
10.1007/978-3-0346-0286-0_10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Negacyclic codes of length 2(s) over the Galois ring GR(2(a), m) are ideals of the chain ring GR(2(a),m)[x]/< x(2s)+1 >. This structure is used to provide the Hamming and homogeneous distances of all such negacyclic codes. The technique is then generalized to obtain the structure and Hamming and homogeneous distances of all gamma-constacyclic codes of length 2(s) over GR(2(a), m), where gamma is any unit of the ring GR(2(a), m) that has the form gamma = (4k(0) - 1) 4k(1)xi + ... + 4k(m-1)xi(m-1), for integers k(0), k(1), ..., k(m-1). Among other results, duals of such gamma-constacyclic codes are studied, and necessary and sufficient conditions for the existence of a self-dual gamma-constacyclic code are established.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 59 条
[1]   A mass formula and rank of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Ghrayeb, A ;
Oehmke, RH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3306-3312
[2]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[3]   Decoding of linear codes over Galois rings [J].
Babu, NS ;
Zimmermann, KH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1599-1603
[4]  
Berlekamp E. R., 1984, Algebraic Coding Theory
[5]  
Berlekamp E. R., 1968, P C COMB MATH APPL C, P298
[6]  
Berman S.D., 1967, Kibernetika, vol, V3, P17
[7]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[8]   Negacyclic codes over Z4 of even length [J].
Blackford, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) :1417-1424
[9]   Hamming metric decoding of alternant codes over Galois rings [J].
Byrne, E ;
Fitzpatrick, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :683-694
[10]   Decoding a class of Lee metric codes over a Galois ring [J].
Byrne, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) :966-975