Electrode effects on the observability of destructive quantum interference in single-molecule junctions

被引:4
作者
Sengul, Ozlem [1 ]
Valli, Angelo [1 ]
Stadler, Robert [1 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
GRAPHENE; TRANSMISSION; TRANSPORT;
D O I
10.1039/d1nr01230d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Destructive quantum interference (QI) has been a source of interest as a new paradigm for molecular electronics as the electronic conductance is widely dependent on the occurrence or absence of destructive QI effects. In order to interpret experimentally observed transmission features, it is necessary to understand the effects of all components of the junction on electron transport. We perform non-equilibrium Green's function calculations within the framework of density functional theory to assess the structure-function relationship of transport through pyrene molecular junctions with distinct QI properties. The chemical nature of the anchor groups and the electrodes controls the Fermi level alignment, which determines the observability of destructive QI. A thorough analysis allows to disentangle the transmission features arising from the molecule and the electrodes. Interestingly, graphene electrodes introduce features in the low-bias regime, which can either mask or be misinterpreted as QI effects, while instead originating from the topological properties of the edges. Thus, this first principles analysis provides clear indications to guide the interpretation of experimental studies, which cannot be obtained from simple Huckel model calculations.
引用
收藏
页码:17011 / 17021
页数:11
相关论文
共 101 条
[1]   Breakdown of Curly Arrow Rules in Anthraquinone [J].
Alqahtani, Jehan ;
Sadeghi, Hatef ;
Sangtarash, Sara ;
Lambert, Colin J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (46) :15065-15069
[2]   Inducing and controlling magnetism in the honeycomb lattice through a harmonic trapping potential [J].
Baumann, K. ;
Valli, A. ;
Amaricci, A. ;
Capone, M. .
PHYSICAL REVIEW A, 2020, 101 (03)
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Quantum Interference Engineering of Nanoporous Graphene for Carbon Nanocircuitry [J].
Calogero, Gaetano ;
Alcon, Isaac ;
Papior, Nick ;
Jauho, Antti-Pekka ;
Brandbyge, Mads .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (33) :13081-13088
[6]   Mechanically Tunable Quantum Interference in Ferrocene-Based Single -Molecule Junctions [J].
Camarasa-Gomez, Maria ;
Hernangomez-Perez, Daniel ;
Inkpen, Michael S. ;
Lovat, Giacomo ;
Fung, E-Dean ;
Roy, Xavier ;
Venkataraman, Latha ;
Evers, Ferdinand .
NANO LETTERS, 2020, 20 (09) :6381-6386
[7]   Mechanically controlled quantum interference in graphene break junctions [J].
Caneva, Sabina ;
Gehring, Pascal ;
Garcia-Suarez, Victor M. ;
Garcia-Fuente, Amador ;
Stefani, Davide ;
Olavarria-Contreras, Ignacio J. ;
Ferrer, Jaime ;
Dekker, Cees ;
van der Zant, Herre S. J. .
NATURE NANOTECHNOLOGY, 2018, 13 (12) :1126-+
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
[10]  
Cuevas J. C., 2010, Molecular Electronics