Almost squares in arithmetic progression

被引:21
作者
Saradha, N [1 ]
Shorey, TN [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
arithmetic progressions; congruences; diophantine equations; elliptic equations; Legendre symbol; squarefree integers; PERFECT POWERS; PRODUCTS; TERMS;
D O I
10.1023/A:1025408727362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that a product of four or more terms of positive integers in arithmetic progression with common difference a prime power is never a square. More general results are given which completely solve (1.1) with gcd(n, d) = k greater than or equal to 3 and 1 < d <= 104.
引用
收藏
页码:73 / 111
页数:39
相关论文
共 18 条
[1]  
[Anonymous], 1990, GREATEST PRIME FACTO
[2]  
Dickson L. E., 1952, History of the Theory of Numbers, V2
[3]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[4]  
ERDOS P, J LONDON MATH SOC, V14, P245
[5]   The resolution of the diophantine equation x(x+d) ... (x+(k-1)d) = by2 for fixed d [J].
Filakovszky, P ;
Hajdu, L .
ACTA ARITHMETICA, 2001, 98 (02) :151-154
[6]   ON THE PRODUCT OF CONSECUTIVE ELEMENTS OF AN ARITHMETIC-PROGRESSION [J].
MARSZALEK, R .
MONATSHEFTE FUR MATHEMATIK, 1985, 100 (03) :215-222
[7]  
Mordell L. J., 1969, Diophantine Equations
[8]  
Oblath R., 1950, PUBL MATH-DEBRECEN, V1, P222
[9]  
Rigge O., 1939, 9 C MATH SCAND HELS, P155
[10]  
ROSSER JB, 1962, ILLINOIS J MATH, V6