Cryo-CMOS Interfaces for Large-Scale Quantum Computers

被引:16
作者
Sebastiano, F. [1 ,2 ]
van Dijk, J. P. G. [1 ,2 ,3 ]
A 't Hart, P. [1 ,2 ,3 ]
Patra, B. [1 ,2 ,3 ]
van Staveren, J. [1 ,2 ]
Xue, X. [1 ,2 ,3 ]
Almudever, C. G. [1 ,2 ]
Scappucci, G. [1 ,2 ,3 ]
Veldhorst, M. [1 ,2 ,3 ]
Vandersypen, L. M. K. [1 ,2 ,3 ]
Vladimirescu, A. [1 ,4 ,5 ]
Pellerano, S. [6 ]
Babaie, M. [1 ,2 ]
Charbon, E. [1 ,2 ,3 ,7 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] QuTech, Delft, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[4] Inst Super Elect Paris, Paris, France
[5] Univ Calif Berkeley, Berkeley, CA USA
[6] Intel, Hillsboro, OR USA
[7] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
来源
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2020年
关键词
D O I
10.1109/IEDM13553.2020.9372075
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cryogenic CMOS (cryo-CMOS) is a viable technology for the control interface of the large-scale quantum computers able to address non-trivial problems. In this paper, we demonstrate state-of-the-art cryo-CMOS circuits and systems for such application and we discuss the challenges still to be faced on the path towards practical quantum computers.
引用
收藏
页数:4
相关论文
共 17 条
  • [1] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [2] Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors
    Beckers, Arnout
    Jazaeri, Farzan
    Enz, Christian
    [J]. IEEE ELECTRON DEVICE LETTERS, 2020, 41 (02) : 276 - 279
  • [3] Charbon E, 2016, INT EL DEVICES MEET
  • [4] Low-temperature performance of nanoscale MOSFET for deep-space RF applications
    Hong, Seung-Ho
    Choi, Gil-Bok
    Baek, Rock-Hyun
    Kang, Hee-Sung
    Jung, Sung-Woo
    Jeong, Yoon-Ha
    [J]. IEEE ELECTRON DEVICE LETTERS, 2008, 29 (07) : 775 - 777
  • [5] Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures
    Incandela, Rosario M.
    Song, Lin
    Homulle, Harald
    Charbon, Edoardo
    Vladimirescu, Andrei
    Sebastiano, Fabio
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01): : 996 - 1006
  • [6] Manfra M.J., ARXIV191201299
  • [7] Patra B., 2020, P ISSCC
  • [8] Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures
    Patra, Bishnu
    Mehrpoo, Mohammadreza
    Ruffino, Andrea
    Sebastiano, Fabio
    Charbon, Edoardo
    Babaie, Masoud
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2020, 8 (01) : 448 - 456
  • [9] Universal quantum logic in hot silicon qubits
    Petit, L.
    Eenink, H. G. J.
    Russ, M.
    Lawrie, W. I. L.
    Hendrickx, N. W.
    Philips, S. G. J.
    Clarke, J. S.
    Vandersypen, L. M. K.
    Veldhorst, M.
    [J]. NATURE, 2020, 580 (7803) : 355 - +
  • [10] t Hart P. A., IEEE JEDS UNPUB