High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrodinger equation

被引:44
作者
Alolyan, Ibraheem [2 ]
Simos, T. E. [1 ,2 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, Sci Computat Lab, Tripolis 22100, Greece
[2] King Saud Univ, Dept Math, Coll Sci, Riyadh 11451, Saudi Arabia
关键词
Numerical solution; Schrodinger equation; Multistep methods; Hybrid methods; Interval of periodicity; P-stability; Phase-lag; Phase-fitted; NUMEROV-TYPE METHODS; RUNGE-KUTTA METHOD; INITIAL-VALUE PROBLEMS; HYBRID EXPLICIT METHODS; PREDICTOR-CORRECTOR METHOD; VARIABLE-STEP METHODS; ACCURATE COMPUTATIONS; FITTED METHOD; SPECIAL-ISSUE; MULTISTEP METHODS;
D O I
10.1007/s10910-010-9718-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present paper we develop a high algebraic order multistep method. The characteristic property of the new proposed method is the requirement of vanishing the phase-lag and its derivatives. The new method is applied for the approximate solution of the radial Schrodinger equation. The efficiency of the new methodology is proved via error analysis and numerical applications.
引用
收藏
页码:925 / 958
页数:34
相关论文
共 110 条
[1]   Numerical multistep methods for the efficient solution of quantum mechanics and related problems [J].
Anastassi, Z. A. ;
Simos, T. E. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 482 :1-240
[2]   An optimized Runge-Kutta method for the solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :1-9
[3]   A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
NEW ASTRONOMY, 2004, 10 (01) :31-37
[4]   Special optimized Runge-Kutta methods for IVPs with oscillating solutions [J].
Anastassi, ZA ;
Simos, TE .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (01) :1-15
[5]  
[Anonymous], 1977, QUANTUM MECH NONRELA
[6]   Embedded methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :85-102
[7]   Embedded eighth order methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 26 (04) :327-341
[8]   A generator of dissipative methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Konguetsof, A ;
Simos, TE .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 148 (01) :59-73
[9]   On variable-step methods for the numerical solution of Schrodinger equation and related problems [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & CHEMISTRY, 2001, 25 (01) :3-13
[10]   A generator of hybrid explicit methods for the numerical solution of the Schrodinger equation and related problems [J].
Avdelas, G ;
Konguetsof, A ;
Simos, TE .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 136 (1-2) :14-28