Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications - a comparative study

被引:157
作者
Deivaraj, TC
Lee, JY
机构
[1] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117543, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
关键词
direct methanol fuel cell; electrocatalyst; PtRu nanoparticles; Pt alloy; single-source precursors; thermolysis;
D O I
10.1016/j.jpowsour.2004.10.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-supported PtRu nanoparticles were prepared by different methods that involve the simultaneous chemical reduction of H2PtCl6 and RuCl3 by NaBH4 at room temperature (PtRu-1), by ethanol under reflux (PtRu-2), and by the thermal decomposition of a single-source molecular precursor [(bipy)(3)Ru] (PtCl6) (PtRu-3). Transmission electron microscopy (TEM) examinations show that the mean diameter of the PtRu nanoparticles is lowest for PtRu-1 followed by PtRu-2 and PtRu-3. Measurements of electrocatalytic properties, however, reveal a different trend, namely: PtRu-3 > PtRu-1 > PtRu-2. This is attributed to the formation of a more homogenous alloy nanoparticle system from the thermolysis of the single-source molecular precursor. All three catalysts are more active than commercially available E-TEK (20 wt.%) Pt catalyst. PtRu-3 also displays the highest tolerance to carbon monoxide. Heat treatment of PtRu-1 and PtRu-2 only marginally affects their electrocatalytic performance, whereas the co-reduction of H2PtCl6 and RuCl3 under alkaline conditions has more adverse Outcomes. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 43 条
[1]  
Anderson ML, 2002, NANO LETT, V2, P235, DOI 10.1021/n1015707d
[2]   Synthesis of PtSn/carbon nanocomposites using trans-PtCl(PEt3)2(SnCl3) as the source of metal [J].
Boxall, DL ;
Kenik, EA ;
Lukehart, CM .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1715-1720
[3]   Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation:: A DMFC anode catalyst of high relative performance [J].
Boxall, DL ;
Deluga, GA ;
Kenik, EA ;
King, WD ;
Lukehart, CM .
CHEMISTRY OF MATERIALS, 2001, 13 (03) :891-900
[4]   TRIS(2,2'-BIPYRIDINE)RUTHENIUM(II) DICHLORIDE HEXAHYDRATE [J].
BROOMHEAD, JA ;
YOUNG, CG .
INORGANIC SYNTHESES, 1990, 28 :338-340
[5]  
Chandler G.K., 1997, PLATIN MET REV, V41, P54
[6]   Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water [J].
Chen, SH ;
Kimura, K .
LANGMUIR, 1999, 15 (04) :1075-1082
[7]   Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications [J].
Chen, WX ;
Lee, JY ;
Liu, ZL .
CHEMICAL COMMUNICATIONS, 2002, (21) :2588-2589
[8]   Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures [J].
Chu, D ;
Gilman, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) :1685-1690
[9]   Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J].
Deivaraj, TC ;
Chen, WX ;
Lee, JY .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (10) :2555-2560
[10]   Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution [J].
Drillet, JF ;
Ee, A ;
Friedemann, J ;
Kötz, R ;
Schnyder, B ;
Schmidt, VM .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1983-1988