Some compatible Poisson structures and integrable bi-Hamiltonian systems on four dimensional and nilpotent six dimensional symplectic real Lie groups

被引:2
作者
Abedi-Fardad, Jafar [1 ]
Rezaei-Aghdam, Adel [2 ]
Haghighatdoost, Ghorbanali [3 ]
机构
[1] Univ Bonab, Dept Math, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Phys, Tabriz 53714161, Iran
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 53714161, Iran
关键词
Integrable bi-Hamiltonian system; Compatible Poisson structures; Symplectic Lie group; ALGEBRAS; SO(4); SINGULARITIES;
D O I
10.1080/14029251.2017.1306944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an alternative method for obtaining of compatible Poisson structures on Lie groups by means of the adjoint representations of Lie algebras. In this way we calculate some compatible Poisson structures on four dimensional and nilpotent six dimensional symplectic real Lie groups. Then using Magri-Morosi's theorem we obtain new bi-Hamiltonian systems with four dimensional and nilpotent six dimensional symplectic real Lie groups as phase spaces.
引用
收藏
页码:149 / 170
页数:22
相关论文
共 26 条