The convergence rate of economical iterative methods for stationary problems of mathematical physics

被引:0
|
作者
Abrashin, VN [1 ]
Zhadaeva, NG
机构
[1] Natl Acad Sci, Inst Math, Minsk, BELARUS
[2] Belarusian State Univ, Minsk 220050, BELARUS
关键词
Convergence Rate; Iterative Method; Alternate Direction Method; Iteration Parameter; Optimal Convergence Rate;
D O I
10.1007/BF02754308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1348 / 1359
页数:12
相关论文
共 50 条
  • [41] On the convergence of the iterative methods
    Costa, V. A. F.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2022, 81 (1-6) : 1 - 13
  • [42] CONVERGENCE OF ITERATIVE METHODS
    KIKUTA, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 10 (06): : 653 - 672
  • [43] Convergence of Iterative Methods
    Cegielski, Andrzej
    ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 : 105 - 127
  • [44] Adaptation of Iterative Methods to Solve Fuzzy Mathematical Programming Problems
    Silva, Ricardo C.
    Cantao, Luiza A. P.
    Yamakami, Akebo
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 330 - +
  • [45] A New Economical Unconditional Stable Splitting Method for Numerical Solution of Problems of Mathematical Physics
    Kuznetsova, Ek. L.
    Egorova, O. V.
    Novikov, A. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (05) : 2335 - 2341
  • [46] WEAK CONVERGENCE AND STRONG CONVERGENCE OF NONMONOTONIC EXPLICIT ITERATIVE METHODS FOR SOLVING EQUILIBRIUM PROBLEMS
    Muangchoo, Kanikar
    Rehman, Habib Ur
    Kumam, Poom
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (03) : 663 - 682
  • [47] An iterative domain decomposition method for solving problems of mathematical physics. II
    Abrashin, VN
    Egorov, AA
    DIFFERENTIAL EQUATIONS, 1998, 34 (02) : 270 - 276
  • [48] On an iterative method of domain decomposition for solving problems in mathematical physics. I
    Abrashin, VN
    DIFFERENTIAL EQUATIONS, 1997, 33 (07) : 902 - 911
  • [49] STATIONARY AND NONSTATIONARY ITERATIVE METHODS FOR NONLINEAR BOUNDARY-VALUE-PROBLEMS
    SHRIDHARAN, R
    AGARWAL, RP
    MATHEMATICAL AND COMPUTER MODELLING, 1993, 18 (02) : 43 - 62
  • [50] Non-stationary parallel Newton iterative methods for nonlinear problems
    Arnal, J
    Migallón, V
    Penadés, J
    VECTOR AND PARALLEL PROCESSING - VECPAR 2000, 2001, 1981 : 380 - 394