A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations

被引:3
作者
Shen, Jin-Ni [1 ,2 ]
Fang, Yi [1 ]
Lin, Zi-Xiong [3 ]
Xie, Tian-Zhu [1 ]
Zhang, Yong-Fan [4 ]
Wu, Li-Ming [5 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Fujian Prov Univ, Fuzhou Univ, Key Lab Ecomat Adv Technol, Fuzhou 350002, Fujian, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China
[4] Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China
[5] Beijing Normal Univ, Dept Chem, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT-PROPERTIES; THERMAL-CONDUCTIVITY; ANTIMONY NANOWIRES; BAND-STRUCTURE; BISMUTH; FIGURE; ROUTE; MERIT;
D O I
10.1039/c8ra07395c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a theoretical study on the potential thermoelectric performance of antimony nanoribbons (SNRs). Based on density functional theory and the semiclassical transport model, the thermoelectric figure of merit ZT was calculated for various Sb nanoribbon sizes and different chiralities. The results indicated that the chemical-bond-driven edge reconstruction of nanoribbons (denoted as SNRs-recon) eliminated all of the dangling bonds and passivated all of the boundary antimony atoms with 3-fold coordination. SNRs-recon are the most energy favorable compared to the ribbons with unsaturated edge atoms. Semimetal to semiconductor transition occurred in SNRs-recon. The band gap was width-dependent in armchair SNRs (denoted as ASNRs-recon), whereas it was width-independent in zigzag SNRs (ZSNRs-recon). After nanolization and reconstruction, the TE properties of SNRs were enhanced due to higher Seebeck coefficient and lower thermal conductivity. The thermoelectric properties of n-doped ASNRs-recon and p-doped ZSNRs-recon showed width-dependent odd-even oscillation and eventually resulted in ZT values of 0.75 and 0.60, respectively. Upon increasing the ribbon width, ZT of n-doped ASNRs-recon decreased and approached a constant value of about 0.85. However, n-doped ZSNRs-recon exhibited poor TE performance compared with the others. Importantly, the ZT value could be optimized to as high as 1.91 at 300 K, which was larger than those of Sb-based bulk materials and 100 times that of thin Sb films. These optimizations make the materials promising room-temperature high-performance thermoelectric materials. Furthermore, the proposed new concept of chemical-bond-driven edge reconstruction may be useful for many other related systems.
引用
收藏
页码:1047 / 1054
页数:8
相关论文
共 45 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[4]   Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure [J].
Cao, Y. Q. ;
Zhao, X. B. ;
Zhu, T. J. ;
Zhang, X. B. ;
Tu, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (14)
[5]   CsBi4Te6:: A high-performance thermoelectric material for low-temperature applications [J].
Chung, DY ;
Hogan, T ;
Brazis, P ;
Rocci-Lane, M ;
Kannewurf, C ;
Bastea, M ;
Uher, C ;
Kanatzidis, MG .
SCIENCE, 2000, 287 (5455) :1024-1027
[6]   Atomistic Simulations of Heat Transport in Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[7]   Theoretical study of the lattice thermal conductivity in Ge framework semiconductors [J].
Dong, JJ ;
Sankey, OF ;
Myles, CW .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2361-2364
[8]   GULP: A computer program for the symmetry-adapted simulation of solids [J].
Gale, JD .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (04) :629-637
[9]   First-principles study of graphene edge properties and flake shapes [J].
Gan, Chee Kwan ;
Srolovitz, David J. .
PHYSICAL REVIEW B, 2010, 81 (12)
[10]   In-Plane Transport and Enhanced Thermoelectric Performance in Thin Films of the Topological Insulators Bi2Te3 and Bi2Se3 [J].
Ghaemi, Pouyan ;
Mong, Roger S. K. ;
Moore, J. E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)