A Fully Automated Deep Learning Pipeline for Multi-Vertebral Level Quantification and Characterization of Muscle and Adipose Tissue on Chest CT Scans

被引:28
作者
Bridge, Christopher P. [1 ,2 ]
Best, Till D. [3 ,5 ,6 ,7 ,8 ]
Wrobel, Maria M. [3 ,9 ]
Marquardt, J. Peter [3 ]
Magudia, Kirti [10 ]
Javidan, Cylen [11 ]
Chung, Jonathan H. [12 ,13 ]
Kalpathy-Cramer, Jayashree [1 ]
Andriole, Katherine P. [1 ,2 ,4 ]
Fintelmann, Florian J. [3 ]
机构
[1] Massachusetts Gen Hosp & Brigham & Womens Hosp Ct, 55 Fruit St, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Div Thorac Imaging & Intervent, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[4] Brigham & Womens Hosp, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[5] Charite Univ Med Berlin, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Dept Radiol, Berlin, Germany
[8] Berlin Inst Hlth, Dept Radiol, Berlin, Germany
[9] Ludwig Maximilians Univ Munchen, Dept Radiol, Munich, Germany
[10] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[11] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[12] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[13] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
SKELETAL-MUSCLE;
D O I
10.1148/ryai.210080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Body composition on chest CT scans encompasses a set of important imaging biomarkers. This study developed and validated a fully automated analysis pipeline for multi-vertebral level assessment of muscle and adipose tissue on routine chest CT scans. This study retrospectively trained two convolutional neural networks on 629 chest CT scans from 629 patients (55% women; mean age, 67 years 6 10 [standard deviation]) obtained between 2014 and 2017 prior to lobectomy for primary lung cancer at three institutions. A slice-selection network was developed to identify an axial image at the level of the fifth, eighth, and 10th thoracic vertebral bodies. A segmentation network (U-Net) was trained to segment muscle and adipose tissue on an axial image. Radiologist-guided manual-level selection and segmentation generated ground truth. The authors then assessed the predictive performance of their approach for cross-sectional area (CSA) (in centimeters squared) and attenuation (in Hounsfield units) on an independent test set. For the pipeline, median absolute error and intraclass correlation coefficients for both tissues were 3.6% (interquartile range, 1.3%-7.0%) and 0.959-0.998 for the CSA and 1.0 HU (interquartile range, 0.0-2.0 HU) and 0.95-0.99 for median attenuation. This study demonstrates accurate and reliable fully automated multi-vertebral level quantification and characterization of muscle and adipose tissue on routine chest CT scans. (C)RSNA, 2022
引用
收藏
页数:7
相关论文
共 20 条
[11]   Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index [J].
Martin, Lisa ;
Birdsell, Laura ;
MacDonald, Neil ;
Reiman, Tony ;
Clandinin, M. Thomas ;
McCargar, Linda J. ;
Murphy, Rachel ;
Ghosh, Sunita ;
Sawyer, Michael B. ;
Baracos, Vickie E. .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (12) :1539-1547
[12]   Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study [J].
Pickhardt, Perry J. ;
Graffy, Peter M. ;
Zea, Ryan ;
Lee, Scott J. ;
Liu, Jiamin ;
Sandfort, Veit ;
Summers, Ronald M. .
LANCET DIGITAL HEALTH, 2020, 2 (04) :E192-E200
[13]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[14]   Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image [J].
Shen, W ;
Punyanitya, M ;
Wang, ZM ;
Gallagher, D ;
St-Onge, MP ;
Albu, J ;
Heymsfield, SB ;
Heshka, S .
JOURNAL OF APPLIED PHYSIOLOGY, 2004, 97 (06) :2333-2338
[15]   Visceral adipose tissue: relations between single-slice areas and total volume [J].
Shen, W ;
Punyanitya, M ;
Wang, ZM ;
Gallagher, D ;
St-Onge, MP ;
Albu, J ;
Heymsfield, SB ;
Heshka, S .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2004, 80 (02) :271-278
[16]   Significance of Acquisition Parameters for Adipose Tissue Segmentation on CT Images [J].
Troschel, Amelie S. ;
Troschel, Fabian M. ;
Fuchs, Georg ;
Marquardt, J. Peter ;
Ackman, Jeanne B. ;
Yang, Kai ;
Fintelmann, Florian J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 217 (01) :177-185
[17]   Computed Tomography-based Body Composition Analysis and Its Role in Lung Cancer Care [J].
Troschel, Amelie S. ;
Troschel, Fabian M. ;
Best, Till D. ;
Gaissert, Henning A. ;
Torriani, Martin ;
Muniappan, Ashok ;
Van Seventer, Emily E. ;
Nipp, Ryan D. ;
Roeland, Eric J. ;
Temel, Jennifer S. ;
Fintelmann, Florian J. .
JOURNAL OF THORACIC IMAGING, 2020, 35 (02) :91-100
[18]  
Vallat R., 2018, JOSS, V3, P1026, DOI [DOI 10.21105/JOSS.01026, DOI 10.21105/JOSS.01026.S]
[19]   Associations of Skeletal Muscle With Symptom Burden and Clinical Outcomes in Hospitalized Patients With Advanced Cancer [J].
van Seventer, Emily ;
Marquardt, J. Peter ;
Troschel, Amelie S. ;
Best, Till D. ;
Horick, Nora ;
Azoba, Chinenye ;
Newcomb, Richard ;
Roeland, Eric J. ;
Rosenthal, Michael ;
Bridge, Christopher P. ;
Greer, Joseph A. ;
El-Jawahri, Areej ;
Temel, Jennifer ;
Fintelmann, Florian J. ;
Nipp, Ryan D. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :319-+
[20]   Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning [J].
Weston, Alexander D. ;
Korfiatis, Panagiotis ;
Kline, Timothy L. ;
Philbrick, Kenneth A. ;
Kostandy, Petro ;
Sakinis, Tomas ;
Sugimoto, Motokazu ;
Takahashi, Naoki ;
Erickson, Bradley J. .
RADIOLOGY, 2019, 290 (03) :669-679