A Fully Automated Deep Learning Pipeline for Multi-Vertebral Level Quantification and Characterization of Muscle and Adipose Tissue on Chest CT Scans

被引:28
作者
Bridge, Christopher P. [1 ,2 ]
Best, Till D. [3 ,5 ,6 ,7 ,8 ]
Wrobel, Maria M. [3 ,9 ]
Marquardt, J. Peter [3 ]
Magudia, Kirti [10 ]
Javidan, Cylen [11 ]
Chung, Jonathan H. [12 ,13 ]
Kalpathy-Cramer, Jayashree [1 ]
Andriole, Katherine P. [1 ,2 ,4 ]
Fintelmann, Florian J. [3 ]
机构
[1] Massachusetts Gen Hosp & Brigham & Womens Hosp Ct, 55 Fruit St, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Div Thorac Imaging & Intervent, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[4] Brigham & Womens Hosp, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[5] Charite Univ Med Berlin, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Dept Radiol, Berlin, Germany
[8] Berlin Inst Hlth, Dept Radiol, Berlin, Germany
[9] Ludwig Maximilians Univ Munchen, Dept Radiol, Munich, Germany
[10] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[11] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[12] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[13] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
SKELETAL-MUSCLE;
D O I
10.1148/ryai.210080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Body composition on chest CT scans encompasses a set of important imaging biomarkers. This study developed and validated a fully automated analysis pipeline for multi-vertebral level assessment of muscle and adipose tissue on routine chest CT scans. This study retrospectively trained two convolutional neural networks on 629 chest CT scans from 629 patients (55% women; mean age, 67 years 6 10 [standard deviation]) obtained between 2014 and 2017 prior to lobectomy for primary lung cancer at three institutions. A slice-selection network was developed to identify an axial image at the level of the fifth, eighth, and 10th thoracic vertebral bodies. A segmentation network (U-Net) was trained to segment muscle and adipose tissue on an axial image. Radiologist-guided manual-level selection and segmentation generated ground truth. The authors then assessed the predictive performance of their approach for cross-sectional area (CSA) (in centimeters squared) and attenuation (in Hounsfield units) on an independent test set. For the pipeline, median absolute error and intraclass correlation coefficients for both tissues were 3.6% (interquartile range, 1.3%-7.0%) and 0.959-0.998 for the CSA and 1.0 HU (interquartile range, 0.0-2.0 HU) and 0.95-0.99 for median attenuation. This study demonstrates accurate and reliable fully automated multi-vertebral level quantification and characterization of muscle and adipose tissue on routine chest CT scans. (C)RSNA, 2022
引用
收藏
页数:7
相关论文
共 20 条
[1]   Multilevel Body Composition Analysis on Chest Computed Tomography Predicts Hospital Length of Stay and Complications After Lobectomy for Lung Cancer A Multicenter Study [J].
Best, Till D. ;
Mercaldo, Sarah F. ;
Bryan, Darren S. ;
Marquardt, Jan Peter ;
Wrobel, Maria M. ;
Bridge, Christopher P. ;
Troschel, Fabian M. ;
Javidan, Cylen ;
Chung, Jonathan H. ;
Muniappan, Ashok ;
Bhalla, Sanjeev ;
Meyers, Bryan F. ;
Ferguson, Mark K. ;
Gaissert, Henning A. ;
Fintelmann, Florian J. .
ANNALS OF SURGERY, 2022, 275 (05) :E708-E715
[2]   Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks [J].
Bridge, Christopher P. ;
Rosenthal, Michael ;
Wright, Bradley ;
Kotecha, Gopal ;
Fintelmann, Florian ;
Troschel, Fabian ;
Miskin, Nityanand ;
Desai, Khanant ;
Wrobel, William ;
Babic, Ana ;
Khalaf, Natalia ;
Brais, Lauren ;
Welch, Marisa ;
Zellers, Caitlin ;
Tenenholtz, Neil ;
Michalski, Mark ;
Wolpin, Brian ;
Andriole, Katherine .
OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 :204-213
[3]  
Castiglione J, 2021, RADIOL-ARTIF INTELL, V3, DOI DOI 10.1148/RYAI.2021200130
[4]   Sarcopenia: revised European consensus on definition and diagnosis [J].
Cruz-Jentoft, Alfonso J. ;
Bahat, Gulistan ;
Bauer, Juergen ;
Boirie, Yves ;
Bruyere, Olivier ;
Cederholm, Tommy ;
Cooper, Cyrus ;
Landi, Francesco ;
Rolland, Yves ;
Sayer, Avan Aihie ;
Schneider, Stephane M. ;
Sieber, Cornel C. ;
Topinkova, Eva ;
Vandewoude, Maurits ;
Visser, Marjolein ;
Zamboni, Mauro .
AGE AND AGEING, 2019, 48 (01) :16-31
[5]   Definition and classification of cancer cachexia: an international consensus [J].
Fearon, Kenneth ;
Strasser, Florian ;
Anker, Stefan D. ;
Bosaeus, Ingvar ;
Bruera, Eduardo ;
Fainsinger, Robin L. ;
Jatoi, Aminah ;
Loprinzi, Charles ;
MacDonald, Neil ;
Mantovani, Giovanni ;
Davis, Mellar ;
Muscaritoli, Maurizio ;
Ottery, Faith ;
Radbruch, Lukas ;
Ravasco, Paula ;
Walsh, Declan ;
Wilcock, Andrew ;
Kaasa, Stein ;
Baracos, Vickie E. .
LANCET ONCOLOGY, 2011, 12 (05) :489-495
[6]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[7]   Lumbar skeletal muscle index derived from routine computed tomography exams predict adverse post-extubation outcomes in critically ill patients [J].
Fuchs, Georg ;
Thevathasan, Tharusan ;
Chretien, Yves R. ;
Mario, Julia ;
Piriyapatsom, Annop ;
Schmidt, Ulrich ;
Eikermann, Matthias ;
Fintelmann, Florian J. .
JOURNAL OF CRITICAL CARE, 2018, 44 :117-123
[8]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[9]   Automated Muscle Measurement on Chest CT Predicts All-Cause Mortality in Older Adults From the National Lung Screening Trial [J].
Lenchik, Leon ;
Barnard, Ryan ;
Boutin, Robert D. ;
Kritchevsky, Stephen B. ;
Chen, Haiying ;
Tan, Josh ;
Cawthon, Peggy M. ;
Weaver, Ashley A. ;
Hsu, Fang-Chi .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2021, 76 (02) :277-285
[10]   Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-specific Reference Curves [J].
Magudia, Kirti ;
Bridge, Christopher P. ;
Bay, Camden P. ;
Babic, Ana ;
Fintelmann, Florian J. ;
Troschel, Fabian M. ;
Miskin, Nityanand ;
Wrobel, William C. ;
Brais, Lauren K. ;
Andriole, Katherine P. ;
Wolpin, Brian M. ;
Rosenthal, Michael H. .
RADIOLOGY, 2021, 298 (02) :319-329