A semidefinite programming heuristic for quadratic programming problems with complementarity constraints

被引:10
作者
Braun, S [1 ]
Mitchell, JE
机构
[1] Warren & Selbert Inc, Santa Barbara, CA 93101 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
complementarity constraints; quadratic programming; semidefinite programming;
D O I
10.1007/s10589-005-1014-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these feasible solutions and the best resulting solution provides an estimate for the optimal solution to the quadratic program with complementarity constraints. Computational testing of such an approach is described for a problem arising in portfolio optimization.
引用
收藏
页码:5 / 29
页数:25
相关论文
共 39 条
[1]   A LIFT-AND-PROJECT CUTTING PLANE ALGORITHM FOR MIXED 0-1 PROGRAMS [J].
BALAS, E ;
CERIA, S ;
CORNUEJOLS, G .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :295-324
[2]  
Braun S.E., 2001, THESIS RENSSELAER PO
[3]  
Charnes A., 1962, Naval Res Logist Quart, V9, P181, DOI [DOI 10.1002/NAV.3800090303, 10.1002/nav.3800090303]
[4]  
Demmel JW., 1997, APPL NUMERICAL LINEA
[5]   Engineering and economic applications of complementarity problems [J].
Ferris, MC ;
Pang, JS .
SIAM REVIEW, 1997, 39 (04) :669-713
[6]  
FERRIS MC, 2002, 0009 U WISC COMP SCI
[7]  
FLETCHER R, 2002, 210 NA U DUND DEP MA
[8]  
FLETCHER R, 2002, 209 NA U DUND DEP MA
[9]   A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints [J].
Fukushima, M ;
Luo, ZQ ;
Pang, JS .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1998, 10 (01) :5-34
[10]  
Golub GH, 2013, Matrix Computations, V4