Walsh series analysis of the L2-discrepancy of symmetrisized point sets

被引:35
作者
Larcher, G [1 ]
Pillichshammer, F [1 ]
机构
[1] Univ Linz, Inst Anal & Numer, A-4040 Linz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2001年 / 132卷 / 01期
关键词
digital nets; L-2-discrepancy; Walsh series analysis;
D O I
10.1007/s006050170054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a method to estimate the L-2-discrepancy of symmetrisized point sets from above and from below with the help of Walsh series analysis. We apply the method to a class of two-dimensional net-type point sets, thereby generalizing results of Halton and Zaremba and of Proinov.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 20 条
[1]  
CHEN WWL, 2000, EXPLICIT CONSTRUCTIO
[2]  
Davenport H., 1956, MATHEMATIKA, V3, P131
[3]   DISCREPANCY OF SEQUENCES ASSOCIATED WITH A NUMERATION SYSTEM (IN S-DIMENSION) [J].
FAURE, H .
ACTA ARITHMETICA, 1982, 41 (04) :337-351
[4]   EXTREME AND L2 DISCREPANCIES OF SOME PLANE SETS [J].
HALTON, JH ;
ZAREMBA, SK .
MONATSHEFTE FUR MATHEMATIK, 1969, 73 (04) :316-&
[5]   GENERAL DISCREPANCY ESTIMATES .2. THE HAAR FUNCTION SYSTEM [J].
HELLEKALEK, P .
ACTA ARITHMETICA, 1994, 67 (04) :313-322
[6]   Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration [J].
Larcher, G ;
Niederreiter, H ;
Schmid, WC .
MONATSHEFTE FUR MATHEMATIK, 1996, 121 (03) :231-253
[7]  
LARCHER G, 1998, LECT NOTES STAT, V138, P167
[8]  
LARCHER G, 2000, L2 DISCREPANCY SOBOL, V3
[9]   POINT SETS AND SEQUENCES WITH SMALL DISCREPANCY [J].
NIEDERREITER, H .
MONATSHEFTE FUR MATHEMATIK, 1987, 104 (04) :273-337
[10]  
Niederreiter H., 1992, RANDOM NUMBER GENERA