A Multiscale Failure Model for Analysis of Thin Heterogeneous Plates

被引:22
|
作者
Oskay, Caglar [1 ]
Pal, Ghanshyam [1 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
关键词
multiscale plate model; failure analysis; composite impact; homogenization; asymptotic analysis; BOUNDARY-CONDITIONS; CONTINUUM; STRAIN; LOCALIZATION; LONG;
D O I
10.1177/1056789509104729
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This manuscript presents a new multiscale framework for the analysis of failure of thin heterogeneous structures. The new framework is based on the asymptotic homogenization method with multiple spatial scales, which provides a rigorous mathematical basis for bridging the microscopic scales associated with the periodic microstructure and thickness, and the macroscopic scale associated with the in-plane dimensions of the macrostructure. The proposed approach generalizes the Caillerie-Kohn-Vogelius elastostatic heterogeneous plate theory for failure analysis when subjected to static and dynamic loads. Inelastic fields are represented using the eigendeformation concept. A computationally efficient n-partition computational homogenization model is developed for simulation of large scale structural systems without significantly compromising on the solution accuracy. The proposed model is verified against direct 3D finite element simulations and experimental observations under static and dynamic loads.
引用
收藏
页码:575 / 610
页数:36
相关论文
共 50 条
  • [1] Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements
    Boya Dong
    Congying Li
    Dongdong Wang
    Cheng-Tang Wu
    International Journal of Mechanics and Materials in Design, 2016, 12 : 539 - 562
  • [2] Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements
    Dong, Boya
    Li, Congying
    Wang, Dongdong
    Wu, Cheng-Tang
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2016, 12 (04) : 539 - 562
  • [3] A staggered nonlocal multiscale model for a heterogeneous medium
    Fish, Jacob
    Jiang, Tao
    Yuan, Zheng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (02) : 142 - 157
  • [4] Multiscale thermoelastic analysis of random heterogeneous materials Part II: Direct micromechanical failure analysis and multiscale simulations
    Goupee, Andrew J.
    Vel, Senthil S.
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 48 (01) : 39 - 53
  • [5] MULTISCALE ANALYSIS OF A MODEL PROBLEM OF A THERMOELASTIC BODY WITH THIN INCLUSIONS
    Sazhenkov, S. A.
    Fankina, I., V
    Furtsev, A., I
    Gilev, P., V
    Gorynin, A. G.
    Gorynina, O. G.
    Karnaev, V. M.
    Leonova, E., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 282 - 318
  • [6] Multiscale simulations of heterogeneous model membranes
    Pandit, Sagar A.
    Scott, H. Larry
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (01): : 136 - 148
  • [7] Two-level multiscale enrichment methodology for modeling of heterogeneous plates
    Oskay, Caglar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (09) : 1143 - 1170
  • [8] SYMMETRIC MESOMECHANICAL MODEL FOR FAILURE ANALYSIS OF HETEROGENEOUS MATERIALS
    Crouch, Robert
    Oskay, Caglar
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2010, 8 (05) : 447 - 461
  • [9] A two-scale computational continua multiscale analysis model for honeycomb sandwich plates
    Li, D. H.
    Wu, P. X.
    Wan, A. S.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (03) : 473 - 485
  • [10] Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials
    Lloberas-Valls, O.
    Rixen, D. J.
    Simone, A.
    Sluys, L. J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (11) : 1337 - 1366