Anomalous Emission Shift of CdSe/CdS/ZnS Quantum Dots at Cryogenic Temperatures

被引:14
作者
Liu, Shaojie [1 ,2 ]
Shu, Yufei [1 ,2 ]
Zhu, Meiyi [1 ,2 ]
Qin, Haiyan [1 ,2 ]
Peng, Xiaogang [1 ,2 ]
机构
[1] Zhejiang Univ, Key Lab Excited State Mat Zhejiang Prov, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum dots; temperature-dependent emission energy; exciton fi ne structure; electron; phonon coupling; EXCITON FINE-STRUCTURE; BAND-EDGE EXCITON; DEPENDENT PHOTOLUMINESCENCE; RECOMBINATION DYNAMICS; DARK-EXCITON; NANOCRYSTALS; SPECTRUM; INTERMITTENCY; SPECTROSCOPY; SIZE;
D O I
10.1021/acs.nanolett.2c00220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The band-gap energy of most bulk semiconductors tends to increase as the temperature decreases. However, non-monotonic temperature dependence of the emission energy has been observed in semiconductor quantum dots (QDs) at cryogenic temperatures. Here, using stable and highly efficient CdSe/CdS/ZnS QDs as the model system, we quantitatively reveal the origins of the anomalous emission red-shift (-8 meV) below 40 K by correlating ensemble and single QD spectroscopy measurements. About one-quarter of the anomalous red-shift (-2.2 meV) is caused by the temperature-dependent population of the band-edge exciton fine levels. The enhancement of electronoptical phonon coupling caused by the increasing population of dark excitons with temperature decreases contributes an -3.4 meV red-shift. The remaining -2.4 meV red-shift is attributed to temperaturedependent electron-acoustic phonon coupling.
引用
收藏
页码:3011 / 3017
页数:7
相关论文
共 54 条
[1]  
Adachi S., 2004, HDB PHYS PROPERTIES
[2]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[3]   Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots -: art. no. 195315 [J].
Bayer, M ;
Ortner, G ;
Stern, O ;
Kuther, A ;
Gorbunov, AA ;
Forchel, A ;
Hawrylak, P ;
Fafard, S ;
Hinzer, K ;
Reinecke, TL ;
Walck, SN ;
Reithmaier, JP ;
Klopf, F ;
Schäfer, F .
PHYSICAL REVIEW B, 2002, 65 (19) :1953151-19531523
[4]   Acoustic phonon broadening mechanism in single quantum dot emission [J].
Besombes, L ;
Kheng, K ;
Marsal, L ;
Mariette, H .
PHYSICAL REVIEW B, 2001, 63 (15)
[5]   Direct Observation of the Two Lowest Exciton Zero-Phonon Lines in Single CdSe/ZnS Nanocrystals [J].
Biadala, L. ;
Louyer, Y. ;
Tamarat, Ph. ;
Lounis, B. .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[6]   Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals [J].
Biadala, Louis ;
Siebers, Benjamin ;
Beyazit, Yasin ;
Tessier, Mickael. D. ;
Dupont, Dorian ;
Hens, Zeger ;
Yakovlev, Dmitri R. ;
Bayer, Manfred .
ACS NANO, 2016, 10 (03) :3356-3364
[7]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[9]   Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence [J].
Cao, Zhiyuan ;
Shu, Yufei ;
Qin, Haiyan ;
Su, Bin ;
Peng, Xiaogang .
ACS CENTRAL SCIENCE, 2020, 6 (07) :1129-1137
[10]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018