Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes

被引:34
作者
Shen, Yuneng [1 ,2 ]
Deng, Gang-Hua [1 ]
Ge, Chuanqi [1 ]
Tian, Yuhuan [1 ]
Wu, Guorong [1 ]
Yang, Xueming [1 ]
Zheng, Junrong [3 ]
Yuan, Kaijun [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Peking Univ, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
VIBRATIONAL-ENERGY; LIQUID; SPECTRA; PHASE;
D O I
10.1039/c6cp02878k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li+ bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1) vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li+ ion. The Li+ coordination number of the Li+-SN complex was found to be 2 in the plastic crystal phase (22 degrees C) and 2.5-3 in the liquid phase (80 degrees C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li+-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 degrees C, 60% +/- 10% of the salt dissociates into Li+, which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 degrees C, the salt dissociation ratio can be up to 90% +/- 10%.
引用
收藏
页码:14867 / 14873
页数:7
相关论文
共 29 条
  • [11] Influence of water and thermal history on ion transport in lithium salt-succinonitrile plastic crystalline electrolytes
    Das, Supti
    Bhattacharyya, Aninda J.
    [J]. SOLID STATE IONICS, 2010, 181 (39-40) : 1732 - 1739
  • [12] Study of Ion Transport in Lithium Perchlorate-Succinonitrile Plastic Crystalline Electrolyte via Ionic Conductivity and in Situ Cryo-Crystallography
    Das, Supti
    Prathapa, Siriyara J.
    Menezes, Pramod V.
    Row, Tayur N. Guru
    Bhattacharyya, Aninda J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (15) : 5025 - 5031
  • [13] STRUCTURE OF SUCCINONITRILE IN ITS PLASTIC PHASE
    DEROLLEZ, P
    LEFEBVRE, J
    DESCAMPS, M
    PRESS, W
    FONTAINE, H
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (33) : 6893 - 6903
  • [14] Einstein A, 1906, ANN PHYS-BERLIN, V19, P371
  • [15] VIBRATIONAL SPECTRA AND MOLECULAR STRUCTURE OF 1,2-DICYANOETHANE
    FITZGERALD, WE
    JANZ, GJ
    [J]. JOURNAL OF MOLECULAR SPECTROSCOPY, 1957, 1 (01) : 49 - 60
  • [16] VIBRATION SPECTRA AND FORCE CONSTANTS OF SUCCINONITRILE
    FUJIYAMA, T
    TOKUMARU, K
    SHIMANOUCHI, T
    [J]. SPECTROCHIMICA ACTA, 1964, 20 (03): : 415 - 428
  • [17] Runaway risk of forming toxic compounds
    Hammami, A
    Raymond, N
    Armand, M
    [J]. NATURE, 2003, 424 (6949) : 635 - 636
  • [18] Structure of Plastic Crystalline Succinonitrile: High-Resolution in situ Powder Diffraction
    Hore, Sarmimala
    Dinnebier, Robert
    Wen, Wen
    Hanson, Johnathan
    Maier, Joachim
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2009, 635 (01): : 88 - 93
  • [19] Lakowicz J.R., 2006, Principles of Fluorescence Spectroscopy, DOI 10.1007/978-0-387-46312-4
  • [20] Fast ion conduction in molecular plastic crystals
    Long, S
    MacFarlane, DR
    Forsyth, M
    [J]. SOLID STATE IONICS, 2003, 161 (1-2) : 105 - 112