Surface Grafting of Cellulose Nanocrystals with Poly(ethylene oxide) in Aqueous Media

被引:204
作者
Kloser, Elisabeth [1 ]
Gray, Derek G. [1 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 2A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MICROCRYSTALLINE CELLULOSE; MICROFIBRILS; SUSPENSIONS; HYDROLYSIS; WHISKERS;
D O I
10.1021/la101795s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous suspensions of poly(ethylene oxide)-grafted nanocrystalline cellulose (PEO-grafted NCC) were prepared in order to achieve steric instead of electrostatic stabilization. A two-step process was employed: in the first step NCC suspensions prepared by sulfuric acid hydrolysis were desulfated with sodium hydroxide, and in the second step the surfaces of the crystals were functionalized with epoxy-terminated poly(ethylene oxide) (PEO epoxide) under alkaline conditions. The PEO-grafted samples were analyzed by conductometric titration, ATR-IR, solid-state NMR, MALDI-ToF MS, SEC MALLS, and A FM. The covalent nature of the linkage was confirmed by weight increase and MALDI-TOF analysis. The PEO-grafted cellulose nanocrystals (CNCs) formed a stable colloidal suspension that remained well dispersed, while the desulfated nanoparticles aggregated and precipitated. Upon concentration of the PEO-grafted aqueous NCC suspension, a chiral nematic phase was observed.
引用
收藏
页码:13450 / 13456
页数:7
相关论文
共 25 条
  • [1] Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose
    Araki, J
    Wada, M
    Kuga, S
    Okano, T
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 142 (01) : 75 - 82
  • [2] Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting
    Araki, J
    Wada, M
    Kuga, S
    [J]. LANGMUIR, 2001, 17 (01) : 21 - 27
  • [3] Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions
    Beck-Candanedo, S
    Roman, M
    Gray, DG
    [J]. BIOMACROMOLECULES, 2005, 6 (02) : 1048 - 1054
  • [4] Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis
    Bondeson, D
    Mathew, A
    Oksman, K
    [J]. CELLULOSE, 2006, 13 (02) : 171 - 180
  • [5] Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose
    Capadona, Jeffrey R.
    Shanmuganathan, Kadhiravan
    Trittschuh, Stephanie
    Seidel, Scott
    Rowan, Stuart J.
    Weder, Christoph
    [J]. BIOMACROMOLECULES, 2009, 10 (04) : 712 - 716
  • [6] Fluorescently labeled cellulose nanocrystals for bioimaging applications
    Dong, Shuping
    Roman, Maren
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (45) : 13810 - +
  • [7] Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
    Dong, XM
    Revol, JF
    Gray, DG
    [J]. CELLULOSE, 1998, 5 (01) : 19 - 32
  • [8] Review: current international research into cellulose nanofibres and nanocomposites
    Eichhorn, S. J.
    Dufresne, A.
    Aranguren, M.
    Marcovich, N. E.
    Capadona, J. R.
    Rowan, S. J.
    Weder, C.
    Thielemans, W.
    Roman, M.
    Renneckar, S.
    Gindl, W.
    Veigel, S.
    Keckes, J.
    Yano, H.
    Abe, K.
    Nogi, M.
    Nakagaito, A. N.
    Mangalam, A.
    Simonsen, J.
    Benight, A. S.
    Bismarck, A.
    Berglund, L. A.
    Peijs, T.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) : 1 - 33
  • [9] The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose
    Elazzouzi-Hafraoui, Samira
    Nishiyama, Yoshiharu
    Putaux, Jean-Luc
    Heux, Laurent
    Dubreuil, Frdric
    Rochas, Cyrille
    [J]. BIOMACROMOLECULES, 2008, 9 (01) : 57 - 65
  • [10] Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents
    Goussé, C
    Chanzy, H
    Excoffier, G
    Soubeyrand, L
    Fleury, E
    [J]. POLYMER, 2002, 43 (09) : 2645 - 2651