Si nanocrystal memory devices self-assembled by in situ rapid thermal annealing of ultrathin a-Si on SiO2

被引:17
作者
Chen, Jian-Hao [1 ]
Lei, Tan-Fu
Landheer, Dolf
Wu, Xiaohua
Liu, Jian
Chao, Tien-Sheng
机构
[1] Natl Chiao Tung Univ, Inst Elect, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan
[3] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
[4] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada
关键词
D O I
10.1149/1.2764459
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Si-nanocrystal memories have been fabricated using the thermal agglomeration of an ultrathin (0.9-3.5 nm) amorphous Si (a-Si) film. The a-Si was deposited by electron beam evaporation followed by in situ annealing at 850 C for 5 min. Hemispherical nanocrystals were obtained with a dot density up to 3.9 x 10(11) cm(-2), and a stored charge density of 4.1 x 10(12) cm(-2) (electron + hole) was achieved. The data retention characteristics of nanocrystal-embedded devices have shown a 1 V memory window after 100 h. Well-separated Si nanocrystals with a 23-32% surface-coverage ratio have been successfully demonstrated. The process compatibility of the proposed technique was also discussed. (C) 2007 The Electrochemical Society.
引用
收藏
页码:H302 / H304
页数:3
相关论文
共 17 条
[1]   High trap density and long retention time from self-assembled amorphous Si nanocluster floating gate nonvolatile memory [J].
Cha, Daigil ;
Shin, Jung H. ;
Park, Sangjin ;
Lee, Eunha ;
Park, Yoondong ;
Park, Youngsoo ;
Yoo, In-Kyeong ;
Seol, Kwang Soo ;
Choi, Suk-Ho .
APPLIED PHYSICS LETTERS, 2006, 89 (24)
[2]   A novel approach of fabricating germanium nanocrystals for nonvolatile memory application [J].
Chang, TC ;
Yan, ST ;
Liu, PT ;
Chen, CW ;
Lin, SH ;
Sze, SM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (01) :G17-G19
[3]   Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration [J].
Danielson, David T. ;
Sparacin, Daniel K. ;
Michel, Jurgen ;
Kimerling, Lionel C. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)
[4]   Nanocrystal nonvolatile memory devices [J].
De Blauwe, J .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (01) :72-77
[5]   Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices [J].
De Salvo, B ;
Ghibaudo, G ;
Pananakakis, G ;
Masson, P ;
Baron, T ;
Buffet, N ;
Fernandes, A ;
Guillaumot, B .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (08) :1789-1799
[6]   Correlation between luminescence and structural properties of Si nanocrystals [J].
Iacona, F ;
Franzò, G ;
Spinella, C .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (03) :1295-1303
[7]   Pattern-induced alignment of silicon islands on buried oxide layer of silicon-on-insulator structure [J].
Ishikawa, Y ;
Imai, Y ;
Ikeda, H ;
Tabe, M .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3162-3164
[8]   Electron spectroscopic analysis of the SiO2/Si system and correlation with metal-oxide-semiconductor device characteristics [J].
Iwata, S ;
Ishizaka, A .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (09) :6653-6713
[9]   Charge-trap memory device fabricated by oxidation of Si1-xGex [J].
King, YC ;
King, TJ ;
Hu, CM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (04) :696-700
[10]   Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing [J].
Kouvatsos, DN ;
Ioannou-Sougleridis, V ;
Nassiopoulou, AG .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :397-399