Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data

被引:13
作者
Kukavica, Igor [1 ]
Temam, Roger [2 ]
Vicol, Vlad [1 ]
Ziane, Mohammed [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
PRIMITIVE EQUATIONS; WELL-POSEDNESS; VISCOSITY; ABSENCE;
D O I
10.1016/j.crma.2010.03.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the question of well-posedness in spaces of analytic functions for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary, with a novel side-boundary condition. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:639 / 645
页数:7
相关论文
共 20 条
[1]  
BARDOS C, 1976, C R ACAD SCI PAR A B, V282, pA995
[2]  
BARDOS C., 1977, ANN SCUOLA NORM-SCI, V4, P647
[3]  
BARDOS C, 1976, C R ACAD SCI PARIS A, V282, pAR3
[4]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[5]  
Grenier E, 1999, ESAIM-MATH MODEL NUM, V33, P965
[6]  
KUKAVICA I, DISCRETE A IN PRESS
[7]  
KUKAVICA I, LOCAL EXISTENCE UNIQ
[8]  
Kukavica I, 2009, P AM MATH SOC, V137, P669
[9]   Analyticity of solutions for a generalized Euler equation [J].
Levermore, CD ;
Oliver, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (02) :321-339
[10]   NEW FORMULATIONS OF THE PRIMITIVE EQUATIONS OF ATMOSPHERE AND APPLICATIONS [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (02) :237-288