Summability of solutions of second-order nonlinear elliptic equations with data in classes close to L1

被引:0
作者
Kovalevsky, Alexander A. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Sofia Kovalevskaya St 16, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, Inst Nat Sci & Math, Pr Lenina 51, Ekaterinburg 620083, Russia
关键词
Nonlinear elliptic equations; Dirichlet problem; Entropy solution; Weak solution; Summability of solutions; RIGHT-HAND SIDES; INTEGRABILITY;
D O I
10.1007/s11587-021-00666-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Dirichlet problem in a bounded open set Omega subset of R-n (n >= 2) for a class of second-order nonlinear elliptic equations with right-hand side f in L-1(Omega). We study the summability of entropy and weak solutions of this problem under the stronger assumption that f G(vertical bar f vertical bar)is an element of L-1(Omega), where G is a nonnegative increasing continuous function on [0,+ infinity). We show how the summability of the solutions depends on the function G. Our conditions on G imply that L1+epsilon(Omega) subset of K-G subset of L-1( Omega) for every epsilon > 0, where KG is the set of all measurable functions v on Omega such that v(G)(vertical bar v vertical bar) is an element of L-1(Omega).
引用
收藏
页码:1223 / 1253
页数:31
相关论文
共 21 条
  • [1] Alaoui MK, 2007, Z ANAL ANWEND, V26, P459
  • [2] Alvino A., 2003, ANNMATPURA APPL, V4, P53
  • [3] [Anonymous], 2002, Electron. J. Differ. Equ.
  • [4] Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
  • [5] BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
  • [6] NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA
    BOCCARDO, L
    GALLOUET, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) : 149 - 169
  • [7] Boccardo L., 1996, J CONVEX ANAL, V3, P361
  • [8] Some elliptic equations with W1,10 solutions
    Boccardo, Lucio
    Cirmi, G. Rita
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 : 130 - 141
  • [9] W01,1 solutions in some borderline cases of Calderon-Zygmund theory
    Boccardo, Lucio
    Gallouet, Thierry
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (09) : 2698 - 2714
  • [10] Dal Maso G., 1999, Ann. Sc. Norm. Super.-Pisa-Cl. Sci, V28, P741