Nitrogen and phosphorous Co-Doped Laser-Induced Graphene: A High-Performance electrode material for supercapacitor applications

被引:44
|
作者
Khandelwal, Mahima [1 ]
Van Tran, Chau [1 ]
Bin In, Jung [1 ,2 ]
机构
[1] Chung Ang Univ, Sch Mech Engn, Soft Energy Syst & Laser Applicat Lab, SEOUL 06974, South Korea
[2] Chung Ang Univ, Dept Intelligent Energy & Ind, SEOUL 06974, South Korea
关键词
Laser-induced graphene; Duplicate laser pyrolysis; Nitrogen and phosphorous co-doping; Surface modification; Supercapacitors; POROUS GRAPHENE; ELECTROCHEMICAL CAPACITORS; CARBON; OXIDE; FABRICATION; FUNCTIONALIZATION; ALKANOLAMINE; FACILE; LIGNIN; OXYGEN;
D O I
10.1016/j.apsusc.2021.151714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A versatile and cost-effective strategy is demonstrated to produce N and P co-doped laser-induced graphene (NPLIG) based on a duplicate laser pyrolysis method. The dopant precursor concentration and laser power significantly affected the surface chemistry and electrochemical performance of the NP-LIG. The NP-LIG optimized with 3 wt% H3PO4 and laser power of 3.5 W (NP3-LIG-3.5) in the second pyrolysis step demonstrated an impressive specific areal capacitance (CA) of 163.6 mF/cm2 at 0.2 mA/cm2 in a three-electrode system where 1 M H2SO4 was used as an aqueous electrolyte. Furthermore, the solid-state NP3-LIG-3.5 supercapacitor (NP3-LIG-SC) assembled with a gel electrolyte (PVA-H2SO4) showed a high CA of 69.7 mF/cm2 at 0.05 mA/cm2, which is 4 and 13 times higher, respectively, than those of N-doped LIG and singly pyrolyzed LIG SCs. In addition, the NP3-LIG-SC exhibited good cycling stability (capacitance retention of 84% after 10,000 cycles), a Coulombic efficiency of approximately 100%, and a high areal energy density of 9.67 mu Wh/cm2. This study proposes a facile method for the fabrication of heteroatom-co-doped LIG electrodes for use in flexible and wearable electronics.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications
    Khandelwal, Mahima
    Van Tran, Chau
    Lee, Jungbae
    In, Jung Bin
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [2] From barley straw biomass to N/S co-doped as electrode material for high-performance supercapacitor applications
    Jeloo, Zohreh Asadi Ghare
    Ghasemzadeh, Sakineh
    Hosseini-Monfared, Hassan
    Javanbakht, Mehran
    Naji, Leila
    Najaflo, Mitra
    Hamidi, Susan
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 323
  • [3] Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte
    Chen, Yujuan
    Liu, Zhaoen
    Sun, Li
    Lu, Zhiwei
    Zhuo, Kelei
    JOURNAL OF POWER SOURCES, 2018, 390 : 215 - 223
  • [4] Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors
    Yuan, Guanying
    Wan, Tong
    BaQais, Amal
    Mu, Yirui
    Cui, Dapeng
    Amin, Mohammed A.
    Li, Xiaodong
    Xu, Ben Bin
    Zhu, Xiaohan
    Algadi, Hassan
    Li, Handong
    Wasnik, Priyanka
    Lu, Na
    Guo, Zhanhu
    Wei, Huige
    Cheng, Bowen
    CARBON, 2023, 212
  • [5] Nitrogen and Phosphorous Co-Doped Graphene Monolith for Supercapacitors
    Wen, Yangyang
    Rufford, Thomas E.
    Hulicova-Jurcakova, Denisa
    Wang, Lianzhou
    CHEMSUSCHEM, 2016, 9 (05) : 513 - 520
  • [6] Supramolecular-driven fabrication of porous nitrogen/sulfur co-doped graphene toward high-performance supercapacitor
    Cheng, Honghong
    Li, Bo
    Meng, Tao
    Liu, Cong
    Shu, Dong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (13) : 18624 - 18633
  • [7] Laser-Induced Nitrogen-doped Graphene for High-Performance Flexible Supercapacitors
    Chen, Chaojie
    Wang, Fangcheng
    Yao, Wentao
    Wang, Min
    Yang, Cheng
    2020 21ST INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2020,
  • [8] Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors
    Zhang, Yong
    Zhou, Qingyun
    Ma, Wenhui
    Wang, Chaohui
    Wang, Xuefeng
    Chen, Jiajun
    Yu, Tiantian
    Fan, Shan
    NANO RESEARCH, 2023, 16 (07) : 9519 - 9529
  • [9] Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction
    Wu, Dongling
    Wang, Tao
    Wang, Luxiang
    Jia, Dianzeng
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 290
  • [10] Nitrogen and Sulfur Co-Doped Graphene-Like Carbon from Industrial Dye Wastewater for Use as a High-Performance Supercapacitor Electrode
    Lin, Yannan
    Chen, Hui
    Shi, Yulin
    Wang, Gang
    Chen, Long
    Wang, Fu
    Li, Shiqi
    Yu, Feng
    Zhang, Lili
    GLOBAL CHALLENGES, 2019, 3 (11)