Study of the Choice of Excitation Frequency for Sub Surface Defect Detection in Electrically Thick Conducting Specimen Using Eddy Current Testing

被引:4
作者
Perumal, Mahesh Raja [1 ]
Balasubramaniam, Krishnan [2 ]
Arunachalam, Kavitha [1 ]
机构
[1] Indian Inst Technol Madras, Dept Engn Design, Electromagnet Res Lab, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Ctr Nondestruct Evaluat CNDE, Dept Mech Engn, Madras 600036, Tamil Nadu, India
关键词
Conducting specimen; Eddy current testing; Sub surface defect; Thick plate; PENETRATION; SYSTEM; PROBE;
D O I
10.1007/s10921-018-0520-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Understanding the scope and limitations of non- destructive testing procedure is essential for selecting the appropriate test parameters for material inspection. This paper presents the scope of material ( ds) and probe dependent ( dt) penetration depths for determining the optimal test frequency ( fopt) for detection of sub surface defects in electrically thick conducting specimens. Numerical modelling is carried out for a pancake coil above an electrically thick aluminium plate, t/ dt > 1, to study the influence of the EC probe and defect location ( td f) on the test frequency for near and deep sub surface defects. The study concludes that the optimal test frequency, fopt for detection of deep sub surface defects ( td f / t 1) is determined by the probe dependent skin depth, dt, and the plate thickness is related to fopt by, t. 1/ fopt. The numerical observations were experimentally validated for machined sub surface notches on a 10 mm thick ( t) aluminium plate.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Optimisation of pulsed eddy current probe for detection of sub-surface defects in stainless steel plates [J].
Arjun, V. ;
Sasi, B. ;
Rao, B. Puma Chandra ;
Mukhopadhyay, C. K. ;
Jayakumar, T. .
SENSORS AND ACTUATORS A-PHYSICAL, 2015, 226 :69-75
[2]  
Blitz J., 1991, ELECT MAGNETIC METHO
[3]   Fast Analytical Modeling of Eddy Current Non-Destructive Testing of Magnetic Material [J].
Bouchala, T. ;
Abdelhadi, B. ;
Benoudjit, A. .
JOURNAL OF NONDESTRUCTIVE EVALUATION, 2013, 32 (03) :294-299
[4]  
Bouchala T, 2013, J NONDESTR EVAL
[5]  
Capobianco T. E., 1990, Research in Nondestructive Evaluation, V2, P169, DOI 10.1080/09349849009409496
[6]   Crack detection and recognition using an eddy current differential probe [J].
Chady, T ;
Enokizono, M ;
Sikora, R .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1849-1852
[7]   Performance of magnetic pulsed-eddy-current system using high dynamic and high linearity improved giant magnetoresistance magnetometer [J].
Dolabdjian, Christophe P. ;
Perez, Laurent ;
De Haan, Victor O. ;
De Jong, Paul A. .
IEEE SENSORS JOURNAL, 2006, 6 (06) :1511-1517
[8]   Eddy-current non-destructive testing system for the determination of crack orientation [J].
Hamia, Rimond ;
Cordier, Christophe ;
Dolabdjian, Christophe .
NDT & E INTERNATIONAL, 2014, 61 :24-28
[9]   Development of an Eddy Current Inspection Technique with Surface Magnetization to Evaluate the Carburization Thickness of Ethylene Pyrolysis Furnace Tubes [J].
Hasegawa, Katsunobu ;
Oikawa, Toshiyuki ;
Kasai, Naoya .
JOURNAL OF NONDESTRUCTIVE EVALUATION, 2012, 31 (04) :349-356
[10]   Source separation techniques applied to the detection of subsurface defects in the eddy current NDT of aeronautical lap-joints [J].
Joubert, P. -Y. ;
Vourc'h, E. ;
Tassin, A. ;
Le Diraison, Y. .
NDT & E INTERNATIONAL, 2010, 43 (07) :606-614