A Land-cover Classification Method of High-resolution Remote Sensing Imagery Based on Convolution Neural Network

被引:2
|
作者
Wang, Yuhan [1 ]
Gu, Lingjia [1 ]
Ren, Ruizhi [1 ]
Zheng, Xu [1 ]
Fan, Xintong [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Jilin, Peoples R China
来源
EARTH OBSERVING SYSTEMS XXIII | 2018年 / 10764卷
基金
中国国家自然科学基金;
关键词
High-resolution remote sensing image; GF-2; Deep learning; CNN; CaffeNet;
D O I
10.1117/12.2318930
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the development of space satellites, a large number of high-resolution remote sensing images have been produced, so the analysis and application of high-resolution remote sensing images are very important. Recently deep learning provides a new method to increase the accuracy of land-cover classification. This study aims to propose a classification framework based on convolutional neural network (CNN) to carry out remote sensing scene classification. After remote sensing images are trained by CNN, a model which can extract complex characteristic from the image for classification is created. In this paper, GaoFen-2(GF-2) satellite data is used as data sources and Jilin province of China is selected as the study area. Firstly, the preprocessed images are made into a GF-2 satellite data sets. Secondly, CaffeNet is used to train the data sets through Caffe platform and the classification result is obtained. The CNN overall accuracy is 89.88%, the Kappa coefficient is 0.8026. Compared with the traditional BP neural network classification result, it is obviously find the CNN is more suitable for remote sensing image classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Land-Cover Classification Using Deep Learning with High-Resolution Remote-Sensing Imagery
    Fayaz, Muhammad
    Nam, Junyoung
    Dang, L. Minh
    Song, Hyoung-Kyu
    Moon, Hyeonjoon
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [2] URBAN LAND-COVER CLASSIFICATION FROM HIGH RESOLUTION REMOTE SENSING IMAGERY
    Bedawi, Safaa M.
    Moustafa, Mohamed N.
    Kamel, Mohamed S.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3144 - 3147
  • [3] Classification of Individual Tree Species in High-Resolution Remote Sensing Imagery Based on Convolution Neural Network
    Ouyang Guang
    Jing Linhai
    Yan Shijie
    Li Hui
    Tang Yunwei
    Tan Bingxiang
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (02)
  • [4] Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery
    Scott, Grant J.
    England, Matthew R.
    Starms, William A.
    Marcum, Richard A.
    Davis, Curt H.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (04) : 549 - 553
  • [5] Land-Cover Classification With High-Resolution Remote Sensing Images Using Interactive Segmentation
    Xu, Leilei
    Liu, Yujun
    Shi, Shanqiu
    Zhang, Hao
    Wang, Dan
    IEEE ACCESS, 2023, 11 : 6735 - 6747
  • [6] Land-cover classification with high-resolution remote sensing images using transferable deep models
    Tong, Xin-Yi
    Xia, Gui-Song
    Lu, Qikai
    Shen, Huanfeng
    Li, Shengyang
    You, Shucheng
    Zhang, Liangpei
    REMOTE SENSING OF ENVIRONMENT, 2020, 237
  • [7] A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network
    Zhao, Jingzheng
    Wang, Liyuan
    Yang, Hui
    Wu, Penghai
    Wang, Biao
    Pan, Chengrong
    Wu, Yanlan
    REMOTE SENSING, 2022, 14 (21)
  • [8] Scale Aware Adaptation for Land-Cover Classification in Remote Sensing Imagery
    Deng, Xueqing
    Zhu, Yi
    Tian, Yuxin
    Newsam, Shawn
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2159 - 2168
  • [9] Improved Land Cover Classification of DeeplabV3Plus High-Resolution Remote Sensing Imagery
    Zhu, Fan
    Luo, Xiaobo
    Computer Engineering and Applications, 60 (13): : 266 - 276
  • [10] Research on High Resolution Remote Sensing Image Classification Based on Convolution Neural Network
    Gong, Wenwen
    Wang, Zhuqing
    Liang, Yong
    Fan, Xin
    Hao, Junmeng
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, PT I, 2019, 545 : 87 - 97