Liquid-vapor interface of a polydisperse fluid

被引:1
作者
Buzzacchi, M [1 ]
Wilding, NB [1 ]
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.066126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report a grand canonical Monte Carlo simulation study of the liquid-vapor interface of a model fluid exhibiting polydispersity in terms of the particle size sigma. The bulk density distribution, rho(0)(sigma), of the system is controlled by the imposed chemical potential distribution mu(sigma), the form of which is specified such that rho(0)(sigma) assumes a Schulz form with associated degree of polydispersity approximate to 14%. By introducing a smooth attractive wall, a planar liquid-vapor interface is formed for bulk state points within the region of liquid-vapor coexistence. Owing to fractionation, the pure liquid phase is enriched in large particles, with respect to the coexisting vapor. We investigate how the spatial variation of the density near the liquid-vapor interface affects the evolution of the local distribution of particle sizes between the limiting pure phase forms. We find [as previously predicted by density-functional theory, Bellier-Castella , Phys. Rev. E 65, 021503 (2002)] a segregation of smaller particles to the interface. The magnitude of this effect as a function of sigma is quantified via measurements of the relative adsorption. Additionally, we consider the utility of various estimators for the interfacial width and highlight the difficulty of isolating the intrinsic contribution of polydispersity to this width.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Computer modeling of the liquid-vapor interface of an associating Lennard-Jones fluid [J].
Alejandre, J ;
Duda, Y ;
Sokolowski, S .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (01) :329-336
[2]   GENERALIZED VANDERWAALS THEORIES AND THE ASYMPTOTIC FORM OF THE DENSITY PROFILE OF A LIQUID VAPOR INTERFACE [J].
BARKER, JA ;
HENDERSON, JR .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (12) :6303-6307
[3]   Density functional theory of polydisperse fluid interfaces [J].
Baus, M ;
Bellier-Castella, L ;
Xu, H .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (40) :9255-9263
[4]   Phase diagrams of polydisperse van der Waals fluids [J].
Bellier-Castella, L ;
Xu, H ;
Baus, M .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :8337-8347
[5]   Interfaces of polydisperse fluids: Surface tension and adsorption properties [J].
Bellier-Castella, L ;
Xu, H ;
Baus, M .
PHYSICAL REVIEW E, 2002, 65 (02) :1-021503
[6]   Integral equations for the density profiles of infinitely polydisperse fluids at a hard wall [J].
Bryk, P ;
Patrykiejew, A ;
Reszko-Zygmunt, J ;
Sokolowski, S ;
Henderson, D .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (13) :6047-6052
[7]   Polydisperse hard spheres at a hard wall [J].
Buzzacchi, M ;
Pagonabarraga, I ;
Wilding, NB .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (22) :11362-11373
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   FREE ENERGY OF A NONUNIFORM SYSTEM .3. NUCLEATION IN A 2-COMPONENT INCOMPRESSIBLE FLUID [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (03) :688-699
[10]  
CHAIKIN P, 2000, SOFT FRAGILE MATTER